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TRANSLATORS’ PREFACE.

HE translators feel that no apology is necessary for any rea-
sonable effort to encourage the study of the history of mathe-
matics. The clearer view of the science thus afforded the teacher,
the inspiration to improve his methods of presenting it, the in-
creased interest in the class-work, the tendency of the subject to
combat stagnation of curricula,—these are a few of the reasons for
approving the present renaissance of the study.

This phase of scientific history which Montucla brought into
such repute—it must be confessed rather by his literary style than
by his exactness—and which writers like De Morgan in England,
Chasles in France, Quetelet in Belgium, Hankel and Baltzer in
Germany, and Boncompagni in Italy encouraged as the century
wore on, is seeing a great revival in our day. This new movement
is headed by such scholars as Glinther, Enestrdm, Loria, Paul
Tannery, and Zeuthen, but especially by Moritz Cantor, whose
Vorlesungen tber Geschichte der Mathematik must long remain
the world's standard.

In any movement of this kind compendia are always necessary
for those who lack either the time or the linguistic power to read
the leading treatises. Several such works have recently appeared
in various languages. But the most systematic attempt in this
direction is the work here translated. The writers of most hand-
books of this kind feel called upon to collect a store of anecdotes,
to incorporate tales of no historic value, and to minimize the real
history of the science. Fink, on the other hand, omits biography
entirely, referring the reader to a brief table in the appendix or to
the encyclopedias. He systematically considers the growth of
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arithmetic, algebra, geometry, and trigonometry, carrying the his-
toric development, as should be done, somewhat beyond the limits
of the ordinary course.

At the best, the work of the translator is a rather thankless
task. It is a target for critics of style and for critics of matter.
For the style of the German work the translators will hardly be
held responsible. It is not a fluent one, leaning too much to the
scientific side to make it always easy reading. Were the work
less scientific, it would lend itself more readily to a better English
form, but the translators have preferred to err on the side of a
rather strict adherence to the original.

As to the matter, it has seemed unwise to make any consider-
able changes. The attempt has been made to correct a number of
unquestionable errors, occasional references have been added, and
the biographical notes have been rewritten. It has not seemed
advisable, however, to insert a large number of bibliographical
notes. Readers who are interested in the sui)ject will naturally
place upon their shelves the works of De Morgan, Allman, Gow,
Ball, Heath, and other English writers, and, as far as may be,
works in other languages. The leading German authorities are
mentioned in the footnotes, and the French language offers little
at present beyond the works of Chasles and Paul Tannery.

The translators desire to express their obligations to Professor
Markley for valuable assistance in the translation.

Inasmuch as the original title of the work, Gesckickte der
Elementar-Mathematik, is misleading, at least to English read-
ers, the work going considerably beyond the limits of the elements,
it has been thought best to use as the English title, 4 Brief His
tory of Mathematics.,

W. W. BeMaN, Ann Arbor, Mich.
D. E. Smits, Brockport, N. Y.
March, 1900.



PREFACE.

F the history of a science possesses value for every one whom
calling or inclination brings into closer relations to it,—if the
knowledge of this history is imperative for all who have influence
in the further development of scientific principles or the methods
of employing them to advantage, then acquaintance with the rise
and growth of a branch of science is especially important to the
man who wishes to teach the elements of this science or to pene-
trate as a student into its higher realms.

The following history of elementary mathematics is intended
to give students of mathematics an historical survey of the ele-
mentary parts of this science and to furnish the teacher of the ele-
ments opportunity, with little expenditure of time, to review con-
nectedly points for the most part long familiar to him and to utilise
them in his teaching in suitable comments. The enlivening in-
fluence of historical remarks upon this elementary instruction has
never been disputed. Indeed there are text-books for the elements
of mathematics (among the more recent those of Baltzer and Schu-
bert) which devote considerable space to the history of the science
in the way of special notes. It is certainly desirable that instead
of scattered historical references there should be offered a con-
nected presentation of the history of elementary mathematics, not
one intended for the use of scholars, not as an equivalent for the
great works upon the history of mathematics, but only as a first
picture, with fundamental tones clearly sustained, of the principal
results of the investigation of mathematical history.

In this book the attempt has been made to differentiate the
histories of the separate branches of mathematical science. There
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are considered in order number-systems and number-symbols,
arithmetic, algebra, geometry and trigonometry, allowing, as far
as possible, within the narrow confines of a single branch of the
elements, a rapid and sure orientation. Against such a procedure
the objection may be raised that in this way the general survey of
the culture history of a certain epoch will suffer. On the other
hand, in a history of elementary mathematics, especially one con-
fined within such modest bounds, an exhaustive description of
whole periods with all their correlations of past and future cannot
well be presented.

It is not the purpose of this work to set forth the interesting
historical development of mechanics and astronomy. Although it
cannot be denied that by this separation of related branches there
is wanting a certain definitiveness to the work, yet the hope may
be expressed that this lack will not be felt too keenly. The ele-
mentary parts of mathematics have only few points of contact with
these branches, and our endeavor is to present in brief compass
only that which is most essential.

Further, in the interest of a presentation as condensed as pos-
sible, the biographical notices which often lend great attraction
to a ' more extended treatment of a subject must be relegated to the
appendix and there treated but briefly.

The work had its inception in certain suggestions which the
author received at the semi-monthly meetings of a mathematical
club in Tiibingen, founded and conducted by Prof. Dr. A. Brill,
for which suitable thanks ought here to be expressed. Acknowl-
edgment is especially due to the president of the club ‘whose in-
terpretations have been decisive for certain parts of the present
work. These meetings furnished the author the desired oppor-
tunity, through the lectures connected with the most diverse
branches of the science and through the discussions which often
followed, with references to recent literature, to penetrate into
those circles of thought which to-day dominate the higher branches
of mathematics. The writer was thus led to complete his studies
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by going into the recent history of the science. The results of
such investigations are here presented with perhaps greater full-
ness than seems necessary for the main purpose of the book or
justified by its title. But in default of such a digest, a first experi-
ment may lay claim to a friendly judgment, in spite of the con-
tinually increasing subdivisions of the science; nor will such an
attempt be thought inappropriate, inasmuch as it does not seem
possible to draw a sharp line of demarcation between the elemen-
tary and higher mathematics. For on the one hand certain prob-
lems of elementary mathematics have from time to time furnished
the occasion for the development of higher branches, and on the
other from the acquisitions of these new branches a clear light has
fallen upon the elementary parts. Accordingly it may be gratify-
ing to many a student and teacher to find here at least that which
is fundamental.

The exceedingly rich literature, especially in German, at the
disposal of the author is referred to in the footnotes. He has made
free use of the excellent Jakrduch ber die Fortschritte der
Mathematik, which with clear and systematic arrangement enu-
merates and discusses the most recent mathematical literature.

K. FINk.
TOBINGEN, June, 18ge.
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GENERAL SURVEY.

HE beginnings of the development of mathemat-
ical truths date back to the earliest civilizations
of which any literary remains have come down to us,
namely the Egyptian and the Babylonian. On the
one hand, brought about by the demands of practical
life, on the other springing from the real scientific
spirit of separate groups of men, especially of the
priestly caste, arithmetic and geometric notions came
into being. Rarely, however, was this knowledge
transmitted through writing, so that of the Babylo-
nian civilization we possess only a few traces. From
the ancient Egyptian, however, we have at least one
manual, that of Ahmes, which in all probability ap-
peared nearly two thousand years before Christ.

The real development of mathematical knowledge,
obviously stimulated by Egyptian and Babylonian in-
fluences, begins in Greece. This development shows
itself predominantly in the realm of geometry, and
enters upon its first classic period, a period of no
great duration, during the era of Euclid, Archimedes,
Eratosthenes, and Apollonius. Subsequently it in-
clines more toward the arithmetic side; but it soon
becomes so completely engulfed by the heavy waves
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of stormy periods that only after long centuries and
in a foreign soil, out of Greek works which had es-
caped the general destruction, could a seed, new and
full of promise, take root.

One would naturally expect to find the Romans
entering with eagerness upon the rich intellectual
inheritance which came to them from the conquered
Greeks, and to find their sons, who so willingly re-
sorted to Hellenic masters, showing an enthusiasm
for Greek mathematics. Of this, however, we have
scarcely any evidence. The Romans understood very
well the practical value to the statesman of Greek
geometry and surveying—a thing which shows itself
also in the later Greek schools—but no real mathe-
matical advance is to be found anywhere in Roman
history. Indeed, the Romans often had so mistaken
an idea of Greek learning that not infrequently they
handed it down to later generations in a form entirely
distorted.

More important for the further development of
mathematics are the relations of the Greek teachings
to the investigations of the Hindus and the Arabs.
The Hindus distinguished themselves by a pronounced
talent for numerical calculation. What especially dis-
tinguishes them is their susceptibility to the influence
of Western science, the Babylonian and especially
the Greek, so that they incorporated into their own
system what they received from outside sources and
then worked out independent results.



GENERAL SURVEY. 3

The Arabs, however, in general do not show this
. same independence of apprehension and of judgment.
Their chief merit, none the less a real one however,
lies in the untiring industry which they showed in
translating into their own language the literary treas-
ures of the Hindus, Persians and Greeks. The courts
of the Mohammedan princes from the ninth to the
thirteenth centuries were the seats of a remarkable
scientific activity, and to this circumstance alone do
we owe it that after a period of long and dense dark-
ness Western Europe was in a comparatively short
time opened up to the mathematical sciences.

The learning of the cloisters in the earlier part
of the Middle Ages was not by nature adapted to
enter seriously into matters mathematical or to search
for trustworthy sources of such knowledge. It was
the Italian merchants whose practical turn and easy
adaptability first found, in their commercial relations
with Mohammedan West Africa and Southern Spain, -
abundant use for the common calculations of arith-
metic. Nor was it long after that there developed
among them a real spirit of discovery, and the first
great triumph of the newly revived science was the
solution of the cubic equation by Tartaglia. It should
be said, however, that the later cloister cult labored
zealously to extend the Western Arab learning by
means of translations into the Latin. '

In the fifteenth century, in the persons of Peur-
bach and Regiomontanus, Germany first took position
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in the great rivalry for the advancement of mathemat-
ics. From that time until the middle of the seven-
teenth century the German mathematicians were
chiefly calculators, that is teachers in the reckoning
schools (Reckenschulen). Others, however, were alge-
braists, and the fact is deserving of emphasis that
there were intellects striving to reach still loftier
heights. Among them Kepler stands forth pre-emi-
nent, but with him are associated Stifel, Rudolff, and
Biirgi. Certain is it that at this time and on Ger-
man soil elementary arithmetic and common algebra,
vitally influenced by the Italian school, attained a
standing very conducive to subsequent progress.

The modern period in the history of mathematics
begins about the middle of the seventeenth century.
Descartes projects the foundation theory of the ana-
lytic geometry. Leibnitz and Newton appear as the
discoverers of the differential calculus. The time has
now come when geometry, a science only rarely, and
even then but imperfectly, appreciated after its ban-
ishment from Greece, enters along with analysis upon
a period of prosperous advance, and takes full advan-
tage of this latter sister science in attaining its results.
Thus there were periods in which geometry was able
through its brilliant discoveries to cast analysis, tem-
porarily at least, into the shade.

The unprecedented activity of the great Gauss
divides the modern period into two parts: before
Gauss—the establishment of the methods of the dif-
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ferential and integral calculus and of analytic geom-
etry as well as more restricted preparations for later
advance; with Gauss and after him—the magnificent
development of modern mathematics with its special
regions of grandeur and depth previously undreamed
of. The mathematicians of the nineteenth century
are devoting themselves to the theory of numbers,
modern algebra, the theory of functions and projec-
tive geometry, and in obedience to the impulse of
human knowledge are endeavoring to carry their light
into remote realms which till now have remained in
darkness.



I. NUMBER-SYSTEMS AND NUMBER-
SYMBOLS.

N inexhaustible profusion of external influences
upon thé human mind has found its legitimate
expression in the formation of speech and writing
in numbers and number-symbols. It is true that a
counting of a certain kind is found among peoples of
a low grade of civilization and even among the lower
animals. ¢‘Even ducks can count their young.”* But
where the nature and the condition of the objects
have been of no consequence in the formation of the
number itself, there human counting has first begun.
The oldest counting was even in its origin a pro-
cess of reckoning, an adjoining, possibly also in special
elementary cases a multiplication, performed upon
the objects counted or upon other objects easily em-
ployed, such as pebbles, shells, fingers. Hence arose
number-names. The most common of these undoubt-
edly belong to the primitive domain of language ; with
the advancing developmént of language their aggre-
gate was gradually enlarged, the legitimate combina-

*Hankel, Zwr Geschichte der Mathematsk im Altertum wund Mittelalter,
1874, p. 7. Hereafter referred to as Hankel. Tylor's Primitive Culture also
has a valuable chapter upon counting.
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tion of single terms permitting and favoring the crea-
tion of new numbers. Hence arose number-systems.

The explanation of the fact that 10 is almost every-
where found as the base of the system of counting is
seen in the common use of the fingers in elementary
calculations. In all ancient civilizations finger-reckon-
ing was known and even to-day it is carried on to a
remarkable extent among many savage peoples. Cer-
tain South African races use three persons for num-
bers which run above 100, the first counting the units
on his fingers, the second the tens, and the third the
hundreds. They always begin with the little finger of
the left hand and count to the little finger of the right.
The first counts continuously, the others raising a
finger every time a ten or a hundred is reached.*

Some languages contain words belonging funda-
mentally to the scale of 6 or 20 without these systems
having been completely elaborated ; only in certain
places do they burst the bounds of the decimal sys-
tem. In other cases, answering to special needs, 12
and 60 appear as bases. The New Zealanders have
a scale of 11, their language possessing words for the
first few powers of 11, and consequently 12 is repre-
sented as 11 and 1, 13 as 11 and 2, 22 as two 11’s,
and so on.t

*Cantor, M., Vorlesungen dber Geschichte der Math tik. Vol. I, 1880;
2nd ed., 1894, p. 6. Hereafter referred to as Cantor. Conant, L. L., 7he Nusm-
ber Comcept, N. Y. 1896. Gow, ]., History of Greek Geometry, Cambridge, 1884,
Chap. 1.

4 Cantor, 1., p. 10.
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In the verbal formation of a number-system addi-
tion and multiplication stand out prominently as defin-
itive operations for the composition of numbers ; very
rarely does subtraction come into use and still more
rarely division. For example, 18 is called in Latin
10 4 8 (decem et octo), in Greek 8+ 10 (8xrw-xai-8exa),
in French 10 8 (dix-Auit), in German 8 10 (acht-zehn),
in Latin also 20 — 2 (duo-de-viginti), in Lower Breton
3:6 (#ri-omc’k), in Welsh 2-9 (dew-naw), in Aztec
15 + 3 (caxtulli-om-ey), while 50 is called in the Basque
half-hundred, in Danish two-and-a-half times twenty.*
In spite of the greatest diversity of forms, the written
representation of numbers, when not confined to the
mere rudiments, shows a general law according to
which the higher order precedes the lower in the di-
rection of the writing.¥ Thus in a four-figure number
the thousands are written by the Phcenicians at the
right, by the Chinese above, the former writing from
right to left, the latter from above downward. A
striking exception to this law is seen in the sub-
tractive principle of the Romans in 1V, IX, XL,
etc., where the smaller number is written before the
larger.

Among the Egyptians we have numbers running
from right to left in the hieratic writing, with varying
direction in the hieroglyphics. In the latter the num-
bers were either written out in words or represented
by symbols for each unit, repeated as often as neces-

*Hankel, p. 22. + Hankel, p. 32.
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sary. In one of the tombs near the pyramids of Gizeh
have been found hieroglyphic numerals in which 1 is
represented by a vertical line, 10 by a kind of horse-
shoe, 100 by a short spiral, 10 000 by a pointing finger,
100 000 by a frog, 1 000 000 by a man in the attitude
of astonishment. In the hieratic symbols the figure
for the unit of higher order stands to the right of the
one of lower order in accordance with the law of se-
quence already mentioned. The repetition of sym-
bols for a unit of any particular order does not obtain,
because there are special characters for all nine units,
all the tens, all the hundreds, and all the thousands.*
We give below a few characteristic specimens of the
hieratic symbols:

LU W =% A A A =
1 2 ] 4 5 10 20 80 40

The Babylonian cuneiform inscriptionst proceed
from left to right, which must be looked upon as ex-
ceptional in a Semitic language. In accordance with
the law of sequence the units of higher order stand on
the left of those of lower order. The symbols used
in writing are chiefly the horizontal wedge »-, the ver-
tical wedge Y, and the combination of the two at an
angle4. The symbols were written beside one another,
or, for ease of reading and to save space, over one
another. The symbols for 1, 4, 10, 100, 14, 400, re-
spectively, are as follows:

. #Cantor, L., pp. 43, 44. t Cantor, 1., pp. 77, 78.
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vvy ‘VYVVY YyV Y
Y VLY (¥ Y-
1 4 10 100 14 400

For numbers exceeding 100 there was also, besides
the mere juxtaposition, a multiplicative principle ;
the symbol representing the number of hundreds was
placed at the left of the symbol for hundreds as in the
case of 400 already shown. The Babylonians probably
had no symbol for zero.* The sexagesimal system
(i. e., with the base 60), which played such a part in
the writings of the Babylonian scholars (astronomers
and mathematicians), will be mentioned later.

The Phcenicians, whose twenty-two letters were
derived from the hieratic characters of the Egyptians,
either wrote the numbers out in words or used special
numerical symbols—for the units vertical marks, for
the tens horizontal.t Somewhat later the Syrians used
the twenty-two letters of their alphabet to represent
the numbers 1, 2, . . 9, 10, 20, . . . 90, 100, . . . 400;
500 was 4004 100, etc. The thousands were repre
sented by the symbols for units with a subscript
comma at the right.] The Hebrew notation follows
the same plan.

The oldest Greek numerals (aside from the written
words) were, in general, the initial letters of the funda-
mental numbers. I for 1, II for 6 (wémre), A for 10
(8éxa),§ and these were repeated as often as necessary.

* Cantor, 1., p. 84. t Cantor, 1., p. 113. $ Cantor. 1., pp. 113-114.
§ Cantor, 1., p. 110, -
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These numerals are described by the Byzantine gram-
marian Herodianus (A. D. 200) and hence are spoken
of as Herodianic numbers. Shortly after 500 B. C.
two new systems appeared. One used the 24 letters
of the Ionic alphabet in their natural order for the
numbers from 1 to 24. The other arranged these
letters apparently at random but actually in an order
fixed arbitrarily; thus, a=1, 8=2,...., ¢=10, x=
20,...., p=100, ¢==200, etc. Here too there is
no special symbol for the zero. '

The Roman numerals* were probably inherited
from the Etruscans. The noteworthy peculiarities
are the lack of the zero, the subtractive principle
whereby the value of a symbol was diminished by
placing before it one of lower order (IV=4, IX =9,
XL =40, XC=90), even in cases where the language
itself did not signify such a subtraction; and finally
the multiplicative effect of a bar over the numerals
(XXX=30 000, T=100000). Also for certain frac-
tions there were special symbols and names. Accord-
ing to Mommsen the Roman number-symbols I, V,
X represent the finger, the hand, and the double
hand. Zangemeister proceeds from the standpoint
that decem is related to decussare which means a
perpendicular or oblique crossing, and argues that
every straight or curved line drawn across the symbol
of a number in the decimal system multiplies that
number by ten. In fact, there are on monuments

* Cantor, L., p. 486.
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representations of 1, 10, and 1000, as well as of 5 and
500, to prove his assertion.*

Of especial interest in elementary arithmetic is the
number-system of the Hindus, because it is to these
Aryans that we undoubtedly owe the valuable position-
system now in use. Their oldest symbols for 1 to 9
were merely abridged number-words, and the use of
letters as figures is said to have been prevalent from
the second century A. D.1 The zero is of later origin;
its introduction is not proven with certainty till after
400 A. D. The writing of numbers was carried on,
chiefly according to the position-system, in various
ways. One plan, which Aryabhatta records, repre-
sented the numbers from 1 to 25 by the twenty-five
consonants of the Sanskrit alphabet, and the succeed-
ing tens (30, 40 ....100) by the semi-vowels and
sibilants. A series of vowels and diphthongs formed
multipliers consisting of powers of ten, g meaning
3, g¢ 300, gu 30 000, gau 3-1018.1 In this there is no
application of the position-system, although it ap-
pears in two other methods of writing numbers in
use among the arithmeticians of Southern India.
Both of these plans are distinguished by the fact that

*Sitsungsberichte dev Beviiner Akademie vom 10. November 1887. Words-
worth, in his Fragments and Specimens of Early Latim, 1874, derives C for
centum, M for mille, and L for guinguaginta from three letters of the Chal-
cidian alphabet, corresponding to 0, ¢, and x. He says: ' The origin of this
notation is, I believe, quite uncertain, or rather purely arbitrary, though, of
course, we observe that the initials of mil/le and centwm determined the final
shape taken by the signs, which at first were very different in form.”

t+ See Encyclopadia Britamnica, under * Numerals '’

$Cantor, 1., p. 566.
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the same number can be made up in various ways.
Rules of calculation were clothed in simple verse easy
to hold in mind and to recall. ' For the Hindu mathe-
maticians this was all the more important since they
sought to avoid written calculation as far as possible.
One method of representation consisted in allowing
the alphabet, in groups of 9 symbols, to denote the
numbers from 1 to 9 repeatedly, while certain vowels
represented the zeros. If in the English alphabet ac-
cording to this method we were to denote the num-
bers from 1 to 9 by the consonants 4, ¢, . . . 3 so that
after two countings one finally has =2, and were to
denote zero by every vowel or combination of vowels,
the number 605602 might be indicated by siren or keron,
and might be introduced by some other words in the
text. A second method employed type-words and
combined them according to the law of position.
Thus abdki (one of the 4 seas) =4, surya (the sun
with its 12 houses)=12, agvin (the two sons of the
sun)==2. The combination abdkisuryagvinas denoted
the number 2124.*

Peculiar to the Sanskrit number-language are spe-
cial words for the multiplication of very large num-
bers. Arbuda signifies 100 millions, padma 10 000
millions; from these are derived makarduda—=1000
millions, makapadma=100000 millions. Specially-
formed words for large numbers run up to 107 and
even further. This extraordinary extension of the

* Cantor, I, p. 567.
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decimal system in Sanskrit resembles a number-game,
a mania to grasp the infinitely great. Of this endeavor
to bring the infinite into the realm of number-percep-
tion and representation, traces are found also among
the Babylonians and Greeks. This appearance may
find its explanation in mystic-religious conceptions or
philosophic speculations.

The ancient Chinese number-symbols are confined
to a comparatively few fundamental elements arranged
in a perfectly developed decimal system. Here the
combination takes place sometimes by multiplica-
tion, sometimes by addition. Thus sen=3, cke=10;
che san denotes 13, but san che 30.* Later, as a result
of foreign influence, there arose two new kinds of no-
tation whose figures show some resemblance to the
ancient Chinese symbols. Numbers formed from
them were not written from above downward but
after the Hindu fashion from left to right beginning
with the highest order. The one kind comprising the
merchants’ figures is never printed but is found only
in writings of a business character. Ordinarily the
ordinal and cardinal numbers are arranged in two
lines one above another, with zeros when necessary,
in the form of small circles. In this notation

l'=2, x=4, _|-=:6, +=10, h=10 000, O:O,
" X
and hence H © © ~=_1_ =20046.

*Cantor, 1., p. 630.
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Among the Arabs, those skilful transmitters of
Oriental and Greek arithmetic to the nations of the
West, the custom of writing out number-words con-
tinued till the beginning of the eleventh century.
Yet at a comparatively early period they had already
formed abbreviations of the number-words, the Divant
figures. In the eighth century the Arabs became ac-
quainted with the Hindu number-system and its fig-
ures, including zero. From these figures there arose
amc;ng the Western Arabs, who in their whole litera-
ture presented a decided contrast to their Eastern re-
latives, the Gubar numerals (dust-numerals) as vari-
ants. These Gubar numerals, almost entirely forgotten
to-day among the Arabs themselves, are the ancestors
of our modern numerals,* which are immediately de-
rived from the apices of the early Middle Ages. These
primitive Western forms used in the abacus-calcula-
tions are found in the West European MSS. of the
eleventh and twelfth centuries and owe much of their
prominence to Gerbert, afterwards Pope Sylvester I1.
(consecrated gg9 A. D.).

The arithmetic of the Western nations, cultivated
to a considerable extent in the cloister-schools from
the ninth century on, employed besides the abacus the
Roman numerals, and consequently made no use of a
symbol for zero. In Germany up to the year 1600 the
Roman symbols were called German numerals in dis-
tinction from the symbols—then seldom employed—

* Hankel, p. 255.
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of Arab-Hindu origin, which included a zero (Arabic
as-stfr, Sanskrit sunya, the void). The latter were
called ciphers (Ziffern). From the fifteenth century on
these Arab-Hindu numerals appear more frequently in
Germany on monuments and in churches, but at that
time they had not become common property.* The
oldest monument with Arabic figures (in Katharein
near Troppau) is said to date from 1007. Monuments
of this kind are found in Pforzheim (1371), and in Ulm
(1388). A frequent and free use of the zero in the
thirteenth century is shown in tables for the calcula-
tion of the tides at London and of the duration of
moonlight.t In the year 1471 there appeared in Co-
logne a work of Petrarch with page-numbers in Hindu
figures at the top. In 1482 the first German arith-
metic with similar page-numbering was published in
Bamberg. Besides the ordinary forms of numerals
everywhere used to-day, which appeared exclusively
in an arithmetic of 1489, the following forms for 4, 5,
7 were used in Germany at the time of the struggle
between the Roman and Hindu notations:

R-G- A~

The derivation of the modern numerals is illustrated
by the examples below which are taken in succession
from the Sanskrit, the apices, the Eastern Arab, the

* Unger, Die Methodsk der praktischen Arithmetik, 1888, p.70. Hereafter
referred to as Unger.

+ Giinther, Gesckichte des mathematischen Unterrichts im deutschen Mittel-
alter bis zum Jakr 1525, 1887, p. 175. Hereafter referred to as Giinther.
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Western Arab Gubar numerals, the numerals of the
eleventh, thirteenth, and sixteenth centuries.*

CUNH
cdn 8
FPgva
¢779
6wV A
76 A8
257 8

In the sixteenth century the Hindu position-arith-
metic and its notation first found complete introduc-
tion among all the civilized peoples of the West. By
this means was fulfilled one of the indispensable con-
ditions for the development of common arithmetic in
the schools and in the service of trade and commerce.

*Cantor, table appended to Vel. I, and Hankel, p. 388,



II. ARITHMETIC.
A. GENERAL SURVEY.

HE simplest number-words and elementary count-
ing have always been the common property of
the people. Quite otherwise is it, however, with the
different methods of calculation which are derived
from simple counting, and with their application to
complicated problems. As the centuries passed, that
part of ordinary arithmetic which to-day every child
knows, descended from the closed circle of particular
castes or smaller communities to the common people,
so as to form an important part of general culture.
Among the ancients the education of the youth had to
do almost wholly with bodily exercises. Only a riper
age sought a higher cultivation through intercourse
with priests and philosophers, and this consisted in
part in the common knowledge of to-day: people
learned to read, to write, to cipher.

At the beginning of the first period in the historic
development of common arithmetic stand the Egyp-
tians. To them the Greek writers ascribe the inven-
tion of surveying, of astronomy, and of arithmetic. To
their literature belongs also the most ancient book on
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arithmetic, that of Ahmes, which teaches operations
with whole numbers and fractions. The Babylonians
employed a sexagesimal system in their position-arith-
metic, which latter must also have served the pur-
poses of a religious number-symbolism. The common
arithmetic of the Greeks, particularly in most ancient
times, was moderate in extent until by the activity of
the scholars of philosophy there was developed a real
mathematical science of predominantly geometric
character. In spite of this, skill in calculation was
not esteemed lightly. Of this we have evidence when
Plato demands for his ideal state that the youth should
be instructed in reading, writing, and arithmetic.
The arithmetic of the Romans had a purely prac-
tical turn ; to it belonged a mass of quite complicated
problems arising from controversies regarding ques-
tions of inheritance, of private property and of reim-
bursement of interest. The Romans used duodecimal
fractions. Concerning the most ancient arithmetic of
the Hindus only conjectures can be made ; on the con-
trary, the Hindu elementary arithmetic after the in-
troduction of the position-system is known with toler-
able accuracy from the works of native authors. The
Hindu mathematicians laid the foundations for the
ordinary arithmetic processes of to-day. The influ-
ence of their learning is perceptible in the Chinese
arithmetic which likewise depends on the decimal sys-
tem; in still' greater measure, however, among the
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Arabs who besides the Hindu numeral-reckoning also
employed a calculation by columns.

The time from the eighth to the beginning of the
fifteenth century forms the second period. This is a
noteworthy period of transition, an epoch of the trans-
planting of old methods into new and fruitful soil,
but also one of combat between the well-tried Hindu
methods and the clumsy and detailed arithmetic ope-
rations handed down from the Middle Ages. At
first only in cloisters and cloister-schools could any
arithmetic knowledge be found, and that derived from
Roman sources. But finally there came new sugges-
tions from the Arabs, so that from the eleventh to the
thirteenth centuries there was opposed to the group of
abacists, with their singular complementary methods,
a school of algorists as partisans of the Hindu arith-
metic.

Not until the fifteenth century, the period of in-
vestigation of the original Greek writings, of the
rapid development of astronomy, of the rise of the
arts and of commercial relations, does the third pe-
riod in the history of arithmetic begin. As early
as the thirteenth century besides the cathedral and
cloister-schools which provided for their own religious
and ecclesiastical wants, there were, properly speak-
ing, schools for arithmetic. Their foundation is to be
ascribed to the needs of the brisk trade of German
towns with Italian merchants who were likewise skilled
computers. In the fifteenth and sixteenth centuries
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school affairs were essentially advanced by the human-
istic tendency and by the reformation. Latin schools,
writing schools, German schools (in Germany) for boys
and even for girls, were established. In the Latin
schools only the upper classes received instruction in
arithmetic, in a weekly exercise : they studied the four
fundamental rules, the theory of fractions, and at most
the rule of three, which may not seem so very little
when we consider that frequently in the universities
of that time arithmetic was not carried much further.
In the writing schools and German boys’ schools the
pupils learned something of calculation, numeration,
and notation, especially the difference between the
German numerals (in Roman writing) and the ciphers
(after the Hindu fashion). In the girls’ schools, which
were intended only for the higher classes of people, no
arithmetic was taught. Considerable attainments in
computation could be secured only in the schools for
arithmetic. The most celebrated of these institutions
was located at Nuremberg. In the commercial towns
there were accountants’ guilds which provided for the
extension of arithmetic knowledge. But real mathe-
maticians and astronomers also labored together in de-
veloping the methods of arithmetic. In spite of this
assistance from men of prominence, no theory of arith-
metic instruction had been established even as late as
in the sixteenth century. What had been done be-
fore had to be copied. In the books on arithmetic
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were found only rules and examples, almost never
proofs or deductions.

The seventeenth century brought no essential
change in these conditions. Schools existed as before
where they had not been swallowed up by the horrors
of the Thirty-Years’ War. The arithmeticians wrote
their books on arithmetic, perhaps contrived calculat-
ing machines to make the work easier for their pupils,
or composed arithmetic conversations and poems. A
specimen of this is given in the following extracts
from Tobias Beutel’s 4rsthmetica, the seventh edition
of which appeared in 1693.*

* Numerieren lehrt im Rechen

Zahlen schreiben und aussprechen.”

¢ In Summen bringen heisst addieren
Dies muss das Wortlein Und vollfithren.”

** Wie eine Hand an uns die andre wischet rein
Kann eine Species der andern Probe seyn.”

**We are taught in numeration
Number writing and expression,”
etc., etc.

Commercial arithmetic was improved by the cultiva
tion of the study of exchange and discount, and the
abbreviated method of multiplication. The form of
instruction remained the same, i. e., the pupil reck-
oned according to rules without any attempt being
made to explain their nature.

The eighteenth century brought as its first and

*Unger, p. 124.
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most important innovation the statutory regulation of
school matters by special school laws, and the estab-
lishment of normal schools (the first in 1732 at Stet-
tin in connection with the orphan asylum). As reor-
ganizers of the higher schools appeared the pietists
and philanthropinists. The former established Rea/-
schulen (the oldest founded 1738 in Halle) and higher
Biirgerschulen; the latter in their Schulen der Aufklirung
sought by an improvement of methods to educate
cultured men of the world. The arithmetic exercise-
books of this period contain a simplification of divi-
sion (the downwards or under-itself division) as well
as a more fruitful application of the chain rule and
decimal fractions. By their side also appear manuals
of method whose number is rapidly increasing in the
nineteenth century. In these, elementary teaching
receives especial attention. According to Pestalozzi
(1803) the foundation of calculation is sense-percep-
tion, according to Grube (1842), the comprehensive
treatment of each number before taking up the next,
according to Tanck and Knilling (1884), counting.
In Pestalozzi’s method ¢¢the decimal structure of our
number-system, which includes so many advantages
in the way of calculation, is not touched upon at all,
addition, subtraction, and division do not appear as
separate processes, the accompanying explanations
smother the principal matter in the propositions, that
is the arithmetic truth.”* Grube has simply drawn

¢ Unger, p. 179.
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from Pestalozzi’s principles the most extreme conclu-
sions. His sequence ¢‘is in many respects faulty; his
processes unsuitable.” * The historical development
of arithmetic speaks in favor of the counting-prin-
ciple: the first reckoning in every age has been an
observing and counting.

B. FIRST PERIOD.

THE ARITHMETIC OF THE OLDEST NATIONS TO THE TIME
OF THE ARABS.

I. The Arithmetic of Whole Numbers.

If we leave out of account finger-reckoning, which
cannot be shown with absolute certainty, then accord-
ing to a statement of Herodotus the ancient Egyptian
computation consisted of an operating with pebbleson
a reckoning-board whose lines were at right angles to
the computer. Possibly the Babylonians also used a
similar device. In the ordinary arithmetic of the latter,
as among the Egyptians, the decimal system prevails,
but by its side we also find, especially in dealing with
fractions, a sexagesimal system. This arose without
doubt in the working out of the astronomical observa-
tions of the Babylonian priests.{ The length of the
year of 360 days furnished the occasion for the divi-
sion of the circle into 360 equal parts, one of which
was to represent the apparent daily path of the sun
upon the celestial sphere. If in addition the construc-

* Unger, pp. 192, 193. + Cantor, 1., p. 8o,
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tion of the regular hexagon was known, then it was
natural to take every 60 of these parts again as units.
The number 60 was called soss. Numbers of the
sexagesimal system were again multiplied in accord-
ance with the rules of the decimal system: thus a ner .
=600, a sar=3600. The sexagesimal system estab-
lished by the Babylonian priests also entered into
their religious speculations, where each of their divin-
ities was designated by one of the numbers from 1 to
60 corresponding to his rank. Perhaps the Babyloni-
ans also divided their days into 60 equal parts as has
been shown for the Veda calendars of the ancient
Hindus.

The Greek elementary mathematics, at any rate
as early as the time of Aristophanes (420 B. C.),* used
finger-reckoning and reckoning-boards for ordinary
computation. An explanation of the finger-reckoning
is given by Nicholas Rhabdat of Smyrna (in the four-
teenth century). Moving from the little finger of the
left hand to the little finger of the right, three fingers
were used to represent units, the next two, tens, the
next two, hundreds, and the last three, thousands.
On the reckoning board, the abax (dBaf, dust board),
whose columns were at right angles to the user, the
operations were carried on with pebbles which had a
different place-value in different lines. Multiplication
was performed by beginning with the highest order in
each factor and forming the sum of the partial pro-

*Caator, L. pp. 120,479.  + Gow, History of Greek Mathematics, p. 24.
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ducts. Thus the calculation was effected (in modern

form) as follows:

 126-237 = (100 + 20 + 6) (200 + 304 7)
= 200004+ 3000 4700
+ 40004 600 4140
+ 12004 180 4 42
= 29862

According to Pliny, the finger-reckoning

of the

Romans goes back to King Numa;* the latter had
made a statue of Janus whose fingers represented the
number of the days of a year (3556). Consistently with

this Boethius calls the numbers from 1 to 9

finger-

numbers, 10, 20, 30, . . . joint-numbers, 11, 12, . . .

19, 21, 22, . . . 29, . . . composite numbers.
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mentary teaching the Romans used the adacus, a
board usually covered with dust on which one could

#Cantor, 1., p. 491.
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trace figures, draw columns, and work with pebbles.
Or if the abacus was to be used for computing only,
it was made of metal and provided with grooves (the
vertical lines in the schematic drawing on the pre-
ceding page) in which arbitrary marks (the cross-
lines) could be shifted.

The columns a;...ay 5,... 8 form a system
from 1 to 1000 000; upon a column ¢ are found four
marks, upon a column & only one mark. Each of the
four marks represents a unit, but the upper single
mark five units of the order under consideration.
Further a mark upon ¢; =y, upon cg=+f, upon ¢
=&, UPOD ¢4=_l;, upon cz=qk (relative to the di-
vision of the a’s). The abacus of the figure represents
the number 782192 + & + A + A =782 19243. This
abacus served for the reckoning of results of simple
problems. Along with this the multiplication-table
was also employed. For larger multiplications there
were special tables. Such a one is mentioned by Vic-
torius (about 450 A. D.).* From Boethius, who calls
the abacus marks apices, we learn something about
multiplication and division. Of these operations the
former probably, the latter certainly, was performed
by the use of complements. In Boethius the term
differentia is applied to the complement of the divisor
to the next complete ten or hundred. Thus for the
divisors 7, 84, 213 the differentiz are 3, 6, 871 respec-
tively. The essential characteristics of this comple-

*Cantor, L., p. 495. t Cantor, 1., p. 344.
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mentary division are seen from the following example
put in modern form:

= =10+ gt =1+
= O+ 32(:)-'-167_' b+ g3
ms= *+ s = 2w
B— 184+ o

The swanpan of the Chinese somewhat resembles
the abacus of the Romans. This calculating machine
consists of a frame ordinarily with ten wires inserted.
A cross wire separates each of the ten wires into two
unequal parts; on each smaller part two and on each
larger five balls are strung. The Chinese arithmetics
give no rules for addition and subtraction, but do for
multiplication, which, as with the Greeks, begins
with the highest order, and fordivision, which appears
in the form of a repeated subtraction.

The calculation of the Hindus, after the introduc-
tion of the arithmetic of position, possessed a series
of suitable rules for performing the fundamental ope-
rations. In the case of a smaller figure in the minu-
end subtraction is performed by borrowing and by
addition (as in the so-called Austrian subtraction).*

*The Austrian subtraction corresponds in part to the usual method of
‘“*making change.”
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In multiplication, for which several processes are
available, the product is obtained in some cases
by separating the multipliers into factors and subse-
quently adding the partial products. In other cases
a schematic process is introduced whose peculiarities
are shown in the example 316-37 =11 6606.

8 1 ]

1
9 8 5

2 8
YW S| s

1 1 6 5 5

The result of the multiplication is obtained by the
addition of the figures found within the rectangle in
the direction of the oblique lines. With regard to
division we have only a few notices. Probably, how-
ever, complementary methods were not used.

The earliest writer giving us information on the
arithmetic of the Arabs is Al Khowarazmi. The bor-
rowing from Hindu arithmetic stands out very clearly.
Six operations were taught. Addition and subtraction
begin with the units of highest order, therefore on
the left; halving begins on the right, doubling again
on the left. Multiplication is effected by the process
which the Hindus called Zafstka (it remains stand-
ing).* The partial products, beginning with the high-
est order in the multiplicand, are written above the
corresponding figures of the latter and each figure

*Cantor, 1., p. 674, 571.



30 HISTORY OF MATHEMATICS.

of the product to which other units from a later par-
tial product are added (in sand or dust), rubbed out
and corrected, so that at the end of the computation
the result stands above the multiplicand. In divi-
sion, which is never performed in the complementary
fashion, the divisor stands below the dividend and
advances toward the right as the calculation goes on.
Quotient and remainder appear above the divisor in
481 — 2814, somewhat as follows:*
13
14
28
461
16
16
Al Nasawit also computes after the same fashion as
Al Khowarazmi. Their methods characterise the ele-
- mentary arithmetic of the Eastern Arabs.

In essentially the same manner, but with more or
less deviation in the actual work, the Western Arabs
computed. Besides the Hindu figure-computation
Ibn al Banna teaches a sort of reckoning by columns. }
Proceeding from right to left, the columns are com-
bined in groups of three; such a group is called /a-
karrur; the number of all the columns necessary to
record a number is the mukarrar. Thus for the num-
ber 3849 922 the fakarrur or number of complete
groups is 2, the mukarrar="T. Al Kalsadi wrote a

#Cantor, 1., p. 674. 4+ Cantor, 1., p. 716. % Cantor, 1., p. 757.
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work Raising of the Veil of the Science of Gubar.* The
original meaning of Gubar (dust) has here passed
over into that of the written calculation with figures.
Especially characteristic is it that in addition, sub-
traction (=Zark, taraka=to throw away) and multi-
plication the results are written above the numbers
operated upon, as in the following examples:

193 4 46 =238 and 238 —193 =40

is written, is written,
238 45
193° 238’
45 193
1 1

Several rules for multiplication are found in Al Kal-
sadi, among them one with an advancing multiplier.
In division the result stands below.

FIRST EXAMPLE, SECOND EXAMPLE.
7143 =1001 1001 _ .
is written, 1001 T
21 is written, 32
28 1001
7 M
143 143
ki

2. Caleulation With Fractions.

In his arithmetic Ahmes gives a large number of
examples which show how the Egyptians dealt with
fractions. They made exclusive use of unit-fractions,

*Cantor, 1., p. 763.
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i. e., fractions with numerator 1. For this numerator,
therefore, a special symbol is found, in the hiero-
‘glyphic writing o, in the hieratic a point, so that in
the latter a unit fraction is represented by its denomi-
nator with a point placed above it. Besides these
there are found for § and § the hieroglyphs .—— and
fi;* in the hieratic writing there are likewise special
symbols corresponding to the fractions }, §, §, and 1.
The first problem which Ahmes solves is this, to sep-
arate a fraction into unit fractions. E. g., he finds
=%+ = + stv + shv- This separation,
really an indeterminate problem, is not solved by
Ahmes in general form, but only for special cases.
The fractions of the Babylonians being entirely
in the sexagesimal system, had at the outset a com-
mon denominator, and could be dealt with like whole
numbers. In the written form only the numerator
was given with a special sign attached. The Greeks
wrote a fraction so that the numerator came first with
a single stroke at the right and above, followed in the
same line by the denominator with two strokes, writ-
ten twice, thus 'xa"’xa” =3}. In unit fractions the
numerator was omitted and the denominator written
only once: 8 =3}. The unit fractions to be added
follow immediately one after another.t {” xy” pi8” oxd”
=4+ 5+ 1tz +zdc=H% In arithmetic proper,
extensive use was made of unit-fractions, later also of

*For carefully drawn symbols see Cantor, I. p. 45.
t Cantor, 1., p. 118.
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sexagesimal fractions (in the computation of angles).
Of the use of a bar between the terms of a fraction
there is nowhere any mention. Indeed, where such
use appears to occur, it marks only the result of an
addition, but not a division.*

The fractional calculations of the Romans furnish
an example of the use of the duodecimal system.
The fractions (minuti@) by, f, . . - $4 had special
names and symbols. The exclusive use of these duo-
decimal fractionst was due to the fact that the as,
a mass of copper weighing one pound, was divided
into twelve umciz. The uncia had four sicilies and
twenty-four scripuli. 1=as, }=semis, } =1triens, } =
quadrans, etc. Besides the twelfths special names
were given to the fractions ¢, 2, v, vdr z8y- The
addition and subtraction of such fractions was com-
paratively simple, but their multiplication very de-
tailed. The greatest disadvantage of this system con-
sisted in the fact that all divisions which did not fit
into this duodecimal system could be represented by
minutie either with extreme difficulty or only approxi-
mately.

In the computations of the Hindus both unit frac-
tions and derived fractions likewise appear. The de-
nominator stands under the numerator but is not sep-
arated from it by a bar. The Hindu astronomers
preferred to calculate with sexagesimal fractions. In
the computations of the Arabs Al Khowarazmi gives

*Tannery in Bidl. Math. 1886. + Hankel, p. 57.



34 HISTORY OF MATHEMATICS.

special words for half, third, . . . ninth (expressible
fractions).* All fractions with denominators non-divis-
ible by 2, 3, ... 9, are called mute fractions; they
were expressed by a circumlocution, e. g., % as 2
parts of 17 parts. Al Nasawi writes mixed numbers
in three lines, one under another, at the top the whole
number, below this the.numerator, below this the de-
nominator. For astronomical calculations fractions
of the sexagesimal system were used exclusively.

3. Applied Arithmetic.

The practical arithmetic of the ancients included
besides the common cases of daily life, astronomical
and geometrical problems. The latter will be passed
over here because they are mentioned elsewhere. In
Ahmes problems in partnership are developed and
also the sums of some of the simplest series deter-
mined. Theon of Alexandria showed how to obtain
approximately the square root of a number of angle
degrees by the use of sexagesimal fractions and the
gnomon. The Romans were concerned principally
with problems of interest and inheritance. The Hin-
dus had already developed the method of false posi-
tion (Regwla falsi) and the rule of three, and made
a study of problems of alligation, cistern-filling, and
series, which were still further developed by the Arabs.
Along with the practical arithmetic appear frequent

*Cantor, 1., p. 675.
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traces of observations on the theory of numbers. The
Egyptians knew the test of divisibility of a number by
2. The Pythagoreans distinguished numbers as odd
and even, amicable, perfect, redundant and defective.*
Of two amicable numbers each was equal to the sum
of the aliquot parts of the other (220 gives 14244
45410411 4 20 4 22 4 44 4 55 4 110 =284 and
284 gives 1 4- 24 4 4 71 4 142=220). A perfect num-
ber was equal to the sum of its aliquot parts (6=1+4
2+ 3). If the sum of the aliquot parts was greater or
less than the number itself, then the latter was called
redundant or defective respectively (8 >142+44; 12
<142+43+44+6). Besides this, Euclid starting
from his geometric standpoint commenced some fun-
damental investigations on divisibility, the greatest
common measure and the least common multiple.
The Hindus were familiar with casting out the nines
and with continued fractions, and from them this
knowledge went over to the Arabs. However insig-
nificant may be these beginnings in their ancient
form, they contain the germ of that vast development
in the theory of numbers which the nineteenth cen-
tury has brought about.

*Caator, 1., p. 156.
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C. SYCOND PERIOD.
FROM THE EIGHTH TO THE FOURTEENTH CENTURY.
. The Arithmetic of Whole Numbers.

In the cloister schools, the episcopal schools, and
the private schools of the Merovifxgian and Carloving-
ian period it was the monks almost exclusively who
gave instruction. The cloister schools proper were of
only slight importance in the advancement of mathe-
matical knowledge: on the contrary, the episcopal
and private schools, the latter based on Italian meth-
ods, seem to have brought very beneficial results.
The first to foreshadow something of the mathemat-
ical knowledge of the monks is Isidorus of Seville.
This cloister scholar confined himself to making con-
jectures regarding the derivation of the Roman nu-
merals, and says nothing at all about the method of
computation of his contemporaries. The Venerable
Bede likewise published only some extended observa-
tions on finger-reckoning. He shows how to repre-
sent numbers by the aid of the fingers, proceeding
from left to right, and thereby assumes a certain ac-
quaintance with finger-reckoning, mentioning as his
predecessors Macrobius and Isidorus.* This calew/us
digitalis, appearing in both the East and the West in

*Cantor, I., p. 778.
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exactly the same fashion, played an important part in
fixing the dates of church feasts by the priests of that
time; at least computus digitalis and computus ecclesias-
ticus were frequently used in the same sense.*

With regard to the fundamental operations proper
Bede does not express himself. Alcuin makes much
of number-mysticism and reckons in a very cumbrous
manner with the Roman numerals.t Gerbert was the
first to give in his Regula de abaco computs actual rules,
in which he depended upon the arithmetic part of
Boethius’s work. What he teaches is a pure abacus-
reckoning, which was widely spread by reason of his
reputation. Gerbert’s abacus, of which we have an
accurate description by his pupil Bernelinus, was a
table which for the drawing of geometric figures was
sprinkled with blue sand, but for calculation was di-
vided into thirty columns of which three were reserved
for fractional computations. The remaining twenty-
seven columns were separated from right to left into
groups of three. At the head of each group stood like-
wise from right to left S (singularis), D (decem), C (cen-
tum). The number-symbols used, the so-called apices,
are symbols for 1 to 9, but without zero. In calcu-
lating with this abacus the intermediate operations
could be rubbed out, so that finally only the result re-
mained; or the operation was made with counters.
The fundamental operations were performed princi-
pally by the use of complements, and in this respect

* Giinther. + Giinther.
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division is especially characteristicc. The formation
of the quotient 132 =233} will explain this comple-
mentary division.

C D S C D S
6 6
4 1 9
1 9 | °® 1. 9.
1 9. 9. 1
4. 38 | 8
1. 6.
1. 4.
4. 9.
1. 6.
4.
1. 9. 10 — 4
4.
9 9[10
1. 3. 1
4. 99440
(8 139110
1
79| 7
1. 4.
.| 1 9428
4, 37 8
1 19 1
1. ‘
1 13| 1
1. 71
3 3 1(33

In the example given the complete performance of the com-
plementary division stands on the left; the figures to be rubbed
out as the calculation goes on are indicated by a period on the
right. On the right is found the abacus-division without the for-
mation of the difference in the divisor, below it the explanation of
the complementary division in modern notation.
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In the tenth and eleventh centuries there appeared
a large number of authors belonging chiefly to the
clergy who wrote on abacus-reckoning with apices
but without the zero and without the Hindu-Arab
methods. In the latter the apices were connected with
the abacus itself or with the representation of num-
bers of one figure, while in the running text the Roman
numeral symbols stood for numbers of several figures.
The contrast between the apices-plan and the Roman
is so striking that Oddo, for example, writes: ¢¢If one
takes 5 times 7, or 7 times B, he gets XXXV ” (the b
and 7 written in apices).*

At the time of the abacus-reckoning there arose the peculiar
custom of representing by special signs certain numbers which do
not appear in the Roman system of symbols, and this use contin-
ued far into the Middle Ages. Thus, for example, in the town-

books of Greifswald 250 is continually represented by C 6' CV t

The abacists with their remarkable methods of di-
vision completely dominated Western reckoning up
to the beginning of the twelfth century. But then a
complete revolution was effected. The abacus, the
heir of the computus, i. e., the old Roman method of
calculation and number-writing, was destined to give
way to the algorism with its sensible use of zero and
its simpler processes of reckoning, but not without a
further struggle.} People became pupils of the Wes-
tern Arabs. Among the names of those who extended

*Cantor, 1., p. 846. t Giinther, p. 175. 1 Gilinther, p. 107.
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Arab methods of calculation stands forth especially
pre-eminent that of Gerhard of Cremona, because he
translated into Latin a series of writings of Greek
and Arab authors.* Then was formed the school of
algorists who in contrast to the abacists possessed no
complementary division but did possess the Hindu
place-system with zero. The most lasting material
for the extension of Hindu methods was furnished by
Fibonacci in his Liber abaci. This book ¢“has been
the mine from which arithmeticians and algebraists
have drawn their wisdom ; on this account it has be-
come in general the foundation of modern science.” t
Among other things it contains the four rules for
whole numbers and fractions in detailed form. It is
worthy of especial notice that besides ordinary sub-
traction with borrowing he teaches subtraction by in-
creasing the next figure of the subtrahend by one,
and that therefore Fibonacci is to be regarded as the
creator of this elegant method.

2. Arithmetic of Fractions.

Here, also, after Roman duodecimal fractions had
been exclusively cultivated by the abacists Beda, Ger-
bert and Bernelinus, Fibonacci laid a new foundation
in his exercises preliminary to division. He showed
how to separate a fraction into unit fractions. Espe-
cially advantageous in dealing with small numbers

* Hankel, p. 336. t Hankel, p. 343.
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is his method of determining the common denomina-
tor: the greatest denominator is multiplied by each
following denominator and the greatest common meas-
ure of each pair of factors rejected. (Example: the
least common multiple of 24, 18, 16, 9, 8, 6 is 24:35
=360.)

3. Applied Arithmetic.

The arithmetic of the abacists had for its main
purpose the determination of the date of Easter. Be-
sides this are found, apparently written by Alcuin,
Problems for Quickening the Mind which suggest Ro-
man models. In this department also Leonardo Fibo-
nacci furnishes the most prominent rule (the regula
Jfalst), but his problems belong more to the domain of
algebra than to that of lower arithmetic.

Investigations in the theory of numbers could
hardly be expected from the school of abacists. On
the other hand, the algorist Leonardo was familiar
with casting out the nines, for which he furnished an
independent proof.

D. THIRD PERIOD.
FROM THE FIFTEENTH TO THE NINETEENTH CENTURY.
I. The Arithmetic of Whole Numbers.

While on the whole the fourteenth century had
only reproductions to show, a new period of brisk ac-
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tivity begins with the fifteenth century, marked by
Peurbach and Regiomontanus in Germany, and by
Luca Pacioli in Italy. As far as the individual pro-
cesses are concerned, in addition the sum sometimes
stands above the addends, sometimes below; subtrac-
tion recognizes ¢‘carrying” and ¢“borrowing”; in
multiplication various methods prevail ; in division no
settled method is yet developed. The algorism of
Peurbach names the following arithmetic operations :
Numeratio, addstio, subtractio, mediatio, duplatio, mults-
plicatio, divisio, progressio (arithmetic and geometric
series), besides the extraction of roots which before the
invention of decimal fractions was performed by the
aid of sexagesimal fractions. His upwards-division
still used the arrangement of the advancing divisor ;
it was performed in the manner following (on the left
the explanation of the process, on the right Peurbach’s
division, where figures to be erased in the course of
the reckoning are indicated by a period to the right
and below): The oral statement would be somewhat
like this: 36 in 84 twice, 2:3=6, 8— 6 =2, written
above 8; 2-6=12, 24 —12=12, write above, strike
out 2, etc. The proof of the accuracy of the result is
obtained as in the other operations by casting out the
nines. This method of upwards-division which is not
difficult in oral presentation is still found in arith-
metics which appeared shortly before the beginning
of the nineteenth century.
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In the sixteenth century work in arithmetic had
entered the Latin schools to a considerable extent; but
to the great mass of children of the common people
neither school men nor statesmen gave any thought
before 15625. The first regulation of any value in this
line is the Bavarian Sciuelordnungk de anno 1548 which
introduced arithmetic as a required study into the vil-
lage schools. Aside from an occasional use of finger-
reckoning, this computation was either a computation
upon lines with counters or a figure-computation. In
both cases the work began with practice in numeration
in figures. To perform an operation with counters a
series of horizontal parallels was drawn upon a suit-
able base. Reckoned from below upward each counter
upon the 1st, 2d, 34, . . . line represented the value
1, 10, 100, . . ., but between the lines they represented
5, 50, 600, . . . The following figure shows the rep-
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resentation of 41 096}. In subtraction the minuend,
in multiplication the multiplicand was put upon the
lines. Division was treated as repeated subtractions.
This line-reckoning was completely lost in the seven-
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teenth century when it gave place to real written
arithmetic or figure-reckoning by which it had been
accompanied in the better schools almost from the
first.

In the ordinary business and trade of the Middle
Ages use was also made of the widely-extended score-

o
\J

Q

reckoning. At the beginning of the fifteenth century
this method was quite usual in Frankfort on the Main,
and in England it held its own even into the nine-
teenth century. Whenever goods were bought of a
merchant on credit the amount was represented by
notches cut upon a stick which was split in two length-
wise so that of the two parts which matched, the debtor
kept one and the creditor one so that both were se-
cured against fraud.*

In the cipher-reckoning the computers of the six-
teenth century generally distinguished more than 4
operations; some counted 9, i. e., the 8 named by

*Cantor, M. Mathem. Beity, sum Kulturileben dev Vilker. Halle, 1863.




ARITHMETIC. 45

Peurbach and besides, as a ninth operation, evolution,
the extraction of the square root by the formula (a4 4)?
—a?+4 2ab + 8, and the extraction of the cube root
by the formula (a4 4) =a®+ (a4 5)3ab+ 8. Defi-
nitions appeared, but these were only repeated circum-
locutions. Thus Grammateus says: ¢¢Multiplication
shows how to multiply one number by the other.
Subtraction explains how to subtract one number
from the other so that the remainder shall be seen.” *

Addition was performed just as is done to-day. In
subtraction for the case of a larger figure in the sub-
trahend, it was the custom in Germany to complete
this figure to 10, to add this complement to the min-
uend figure, but at the same time to increase the figure
of next higher order in the subtrahend by 1 (Fibo-
nacci’s counting-on method). In more comprehen-
sive books, borrowing for this case was also taught.
Multiplication, which presupposed practice in the mul-
tiplication table, was performed in a variety of ways.
Most frequently it was effected as to-day with a des-
cent in steps by movement toward the left. Luca
Pacioli describes eight different kinds of multiplica-
tion, among them those above mentioned, with two
old Hindu methods, one represented on p. 29, the
other cross-multiplication or the lightning method.
In the latter method there were grouped all the pro-
ducts involving units, all those involving tens, all
those involving hundreds. The multiplication

* Unger, p. 73.
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243189 —9-3 4 10(9-4 4 3-3)4-100(9-2 4 3-441-3)
+1000(2-3+41-4)+ 10 000-2-1

was represented as follows:

In German books are found, besides these, two note-
worthy methods of multiplication, of which one be-
gins on the left (as with the Greeks), the partial pro-
ducts being written in succession in the proper place,
as shown by the following example 243-839:
839
243
166867 839-243 —=2-8-1044-2-3-10342-9-10
3129 +4-8-10844:3-10%4+4-9-10
232 +3-8-10243-3-10 4 3-9.
14
2

203877

02

In division the upwards-division prevailed; it was
used extensively, although Luca Pacioli in 1494 taught
the downwards-division in modern form.

After the completion of the computation, in con-
formity to historical tradition, a proof was demanded.
At first this was secured by casting out the nines.
On account of the untrustworthiness of this method,
which Pacioli perfectly realised, the performance of
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the inverse operation was recommended. In course
of time the use of a proof was entirely given up.

Signs of operation properly so called were not
yet in use; in the eighteenth century they passed
from algebra into elementary arithmetic. Widmann,
however, in his arithmetic has the signs 4 and —,
which had probably been in use some time among the
merchants, since they appear also in a Vienna MS. of
the fifteenth century.* At a later time Wolf has the
sign -+ for minus. In numeration the first use of the
word ‘“million” in print is due to Pacioli (Summa de
Arithmetica, 1494). Among the Italians the word ¢¢mil-
lion” is said originally to have represented a concrete
mass, viz., ten tons of gold. Strangely enough, the
words ¢“byllion, tryllion, quadrillion, quyllion, sixlion,
septyllion, ottyllion, nonyllion,” as well as ‘“million,”
are found as early as 1484 in Chuquet, while the word
““miliars” (equal to 1000 millions) is to be traced
back to Jean Trenchant of Lyons (1688).}

The seventeenth century was especially inventive
in instrumental appliances for the mechanical per-
formance of the fundamental processes of arithmetic.
Napier’s rods sought to make the learning of the mul-
tiplication-table superfluous. These rods were quad-
rangular prisms which bore on each side the small
multiplication-table for one of the numbers 1, 2,...9.

#Gerhardt, Geschickte der Matk. tik im Dewtschland, 1877. Hereafter
referred to as Gerhardt.

tMiller. Historisch-etymologische Studien Rbey mathematische Termino-
logie. Hereafter referred to as Miiller.
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For extracting square and cube roots rods were used
with the squares and cubes of one-figure numbers in-
scribed upon them. Real calculating machines which
gave results by the simple turning of a handle, but on
that account must have proved elaborate and expen-
sive, were devised by Pascal, Leibnitz, and Matthius
Hahn (1778).

A simplification of another kind was effected by
calculating-tables. These were tables for solving
problems, accompanied also by very extended multi-
plication-tables, such as those of Herwart von Hohen-
burg, from which the product of any two numbers
from 1 to 999 could be read immediately.

For the methods of computation of the eighteenth
century the arithmetic writings of the two Sturms,
and of Wolf and Kistner, are of importance. In the
interest of commercial arithmetic the endeavor was
made to abbreviate multiplication and division by
various expedients. Nothing essentially new was
gained, however, unless it be the so-called mental
arithmetic or oral reckoning which in the later decades
of this period appears as an independent branch.

The nineteenth century has brought as a novelty
in elementary arithmetic only the introduction of the
so-called Austrian subtraction (by counting on) and
division, methods for which Fibonacci had paved the
way. The difference 323 —187=136 is computed
by saying, 7and 6,9 and 3, 2 and 1; and 43083:185
is arranged as in the first of the followmg examples :
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185 1]1679]2737(1
43083232 11 621/1058(1
608 2| 184 437(2

533 : 2| 46 691
163 o 23

With sufficient practice this process certainly secured
a considerable saving of time, especially in the case
of the determination of the greatest common divisor
of two or more numbers as shown by the second of
the above examples

1679 28 173
2737 — 119

2. Arithmetic of Fractions.

At the beginning of this period reckoning with
fractions was regarded as very difficult. The pupil
was first taught how to read fractions: ¢ It is to be
noticed that every fraction has two figures with a line
between. The upper is called the numerator, the
lower the denominator. The expression of fractions is
then: name first the upper figure, then the lower, with
the little word par? as § part” (Grammateus, 1618).*
Then came rules for the reduction of fractions to a
common denominator, for reduction to lowest terms,
for multiplication and division ; in the last the fractions
were first made to have a common denominator. Still
more is found in Tartaglia who knew how to find the
least common denominator ; in Stifel who performed

* Unger, p. 84.
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division by a fraction by the use of its recxprocal and
in the works of other writers.

The way for the introduction of decimal fractions
was prepared by the systems of sexagesimal and duo-
decimal fractions, since by their employment opera-
tions with fractions can readily be performed by the

. corresponding operations with whole numbers. A no-
tation such as has become usual in decimal fractions
was already known to Rudolff,* who, in the division
of integers by powers of 10, cuts off the requisite
number of places with a comma. The complete knowl-
edge of decimal fractions originated with Simon Stevin
who extended the position-system below unity to any
extent desired. Tenths, hundredths, thousandths, ...
were called primes, sekondes, terses . . .; 4.628 is writ-
ten 4() 6) 25 83). Joost Biirgi, in his tables of sines,
perhaps independently of Stevin, used decimal frac-
tions in the form 0.32 and 3.2. The introduction of
the comma as a decimal point is to be assigned to
Kepler.t In practical arithmetic, aside from logarith-
mic computations, decimal fractions were used only
in computing interest and in reduction-tables. They
were brought into ordinary arithmetic at the begin-
ning of the nineteenth century in connection with the
introduction of systems of decimal standards.

* Gerhardt.

+The first use of the decimal point is found in the trigonometric tables
of Pitiscus, 1612. Cantor, II., p. 555.
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3. Applied Arithmetic.

During the transition period of the Middle Ages
applied arithmetic had absorbed much from the Latin
treatises in a superficial and incomplete manner ; the
fifteenth and sixteenth centuries show evidences of
progress in this direction also. Even the Bamberger
Arithmetic of 1483 bears an exclusively practical stamp
and aims only at facility of computation in mercan-
tile affairs. That method of solution which in the
books on arithmetic everywhere occupied the first
place was the ¢‘regeldetri” (regula de tri, rule of
three), known also as the ¢‘merchant’s rule,” or
‘¢golden rule.”* The statement of the rule of three
was purely mechanical ; so little thought was bestowed
upon the accompanying proportion that even master
accountants were content to write 4 fl 12 1h 20 fi? in-
stead of 41: 20l =121 :x1h.t+ There can indeed
be found examples of the rule of three with indirect
ratios, but with no explanations of any kind whatever.
Problems involving the compound rule of three (regula
de quingue, etc.) were solved merely by successive ap-
plications of the simple rule of three. In Tartaglia
and Widmann we find equation of payments treated
according to the method still in use to-day. Other-
wise, Widmann’s Arithmetic of 1489 shows great ob-
scurity and lack of scope in rules and nomenclature,
so that not infrequently the same matter appears un-

# Cantor, II., p. 205 : Unger, p.86. ¢t Cantor, II., p. 368; Unger, p. 87.
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der different names. He introduces ¢¢Regula Residui,
Reciprocationis, Excessus, Divisionis, Quadrata, In-
ventionis, Fusti, Transversa, Ligar, Equalitatis, Legis,
Augmenti, Augmenti et Decrementi, Sententiarum,
Suppositionis, Collectionis, Cubica, Lucri, Pagamenti,
Alligationis, Falsi,” so that in later years Stifel did not
hesitate to declare these things simply laughable.*
Problems of proportional parts and alligation were
solved by the use of as many proportions as corre-
sponded to the number of groups to be separated.
For the computation of compound interest Tartaglia
gave four methods, among them computation by steps
from year to year, or computation with the aid of
the formula 4=—ag", although he does not give this
formula. Computing of exchange was taught in its
most simple form. Itis said that bills of exchange
were first used by the Jews who migrated into Lom-
bardy after being driven from France in the seventh
century. The Ghibellines who fled from Lombardy
introduced exchange into Amsterdam, and from this
city its use spread.t In 1445 letters of exchange were
brought to Nuremberg.

The chain rule (Kettensatz), essentially an Indian
method which is described by Brahmagupta, was de-
veloped during the sixteenth century, but-did not
come into common use until two centuries later. The
methods of notation differed. Pacioli and Tartaglia

s Treutlein, Dfe deutsche Coss, Schldmilch’s Zeitschrift, Bd. 24, HL A,
+ Unger, p. 90.
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wrote all numbers in a horizontal line and multiplied
terms of even and of odd order into separate products.
Stifel proceeded in the same manner, only he placed
all terms vertically beneath one another. In the
work of Rudolff, who also saw the advantage of can-
cellation, we find the modern method of representing
the chain rule, but the answer comes at the end.*
About this time a new method of reckoning was
introduced from Italy into Germany by the merchants,
which came to occupy an important place in the six-
teenth century; and still more so in the seventeenth.
This Welsh (i. e., foreign) practice, as it soon came
to be called, found its application in the development
of the product of two terms of a proportion, especially
when these were unlike quantities. The multiplier,
together with the fraction belonging to it, was sepa-
rated into its addends, to be derived successively one
from another in the simplest possible manner. How
well Stifel understood the real significance and appli-
cability of the Welsh practice, the following statement
shows:t{ ¢The Welsh practice is nothing more than
a clever and entertaining discovery in the rule of three.
But let him who is not acquainted with the Welsh
practice rely upon the simple rule of three, and he
will arrive at the same result which another obtains
through the Welsh practice.” At this time, too, we
find tables of prices and tables of interest in use,
their introduction being also ascribable to the Italians.

*Unger, p. 92. 1 Unger, p. 94.
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In the sixteenth century we also come upon examples
for the regula virginum and the regula falsi in writings
intended for elementary instruction in arithmetic,—
writings into which, ordinarily, was introduced all the
learning of the author. The significance of these
rules, however, does not lie in the realm of elemen-
tary arithmetic, but in that of equations. In the
same way, a few arithmetic writings contained direc-
tions for the construction of magic squares, and most
of them also contained, as a side-issue, certain arith-
metic puzzles and humorous questions (Rudolff calls
them Schimpfrechknung). The latter are often mere
disguises of algebraic equations (the problem of the
hound and the hares, of the keg with three taps, of
obtaining a number which has been changed by cer-
tain operations, etc.).

The seventeenth century brought essential innova-
tions only in the province of commercial computation.
While the sixteenth century was in possession of cor-
rect methods in all computations of interest when
the amount at the end of a given time was sought,
there were usually grave blunders when the principal
was to be obtained, that is, in computing the discount
on a given sum. The discount in 100 was computed
somewhat in this manner:* 100 dollars gives after
two years 10 dollars in interest; if one is to pay the
100 dollars immediately, deduct 10 dollars.” No less
a man than Leibnitz pointed out that the discount

. *Unger, p. 132.



ARITHMETIC. 55

must be reckoned upon 100. Among the majority of
arithmeticians his method met with the misunder-
standing that if the discount at 59, for one year is 4,
the discount for two years must be 4. It was not
until the eighteenth century, after long and sharp
controversy, that mathematicians and jurists united
upon the correct formula.

In the computation of exchange the Dutch were
essentially in advance of other peoples. They pos-
sessed special treatises in this line of commercial arith-
metic and through them they were well acquainted
with the fundamental principles of the arbitration of
exchange. In the way of commercial arithmetic many
expedients were discovered in the eighteenth century
to aid in the performance of the fundamental opera-
tions and in solving concrete problems. Calculation
of exchange and arbitration of exchange were firmly
established and thoroughly discussed by Clausberg.
Especial consideration was given to what was called
the Reesic rule, which was looked upon as differing
from the well-known chain-rule. Rees’s book, which
was written in Dutch, was translated into French in
1737, and from this language into German in 1739.
In the construction of his series Rees began with the
required term; in the computation the elimination of
fractions and cancellation came first, and then fol-
lowed the remaining operations, multiplication and
division.

Computation of capital and interest was extended,
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through the establishment of insurance associations,
to a so-called political arithmetic, in which calcula-
tion of contingencies and annuities held an important
place.

The first traces of conditions for the evolution of
a political arithmetic* date back to the Roman prefect
Ulpian, who about the opening of the third century
A.D. projected a mortality table for Roman subjects.t
But there are no traces among the Romans of life in-
surance institutions proper. It is not until the Middle
Ages that a few traces appear in the legal regulations
of endowments and guild finances. From the four-
teenth century there existed travel and accident in-
surance companies which bound themselves, in con-
sideration of the payment of a certain sum, to ransom
the insured from captivity among the Turks or Moors.

Among the guilds of the Middle Ages the idea of
association for mutual assistance in fires, loss of cattle
and similar losses had already assumed definite shape.
To a still more marked degree was this the case among
the guilds of artisans which arose after the Reforma-
tion—guilds which established regular sick and burial
funds.

We must consider tontines as the forerunner of
annuity insurance. In the middle of the seventeenth
century an Italian physician, Lorenzo Tonti, induced
a number of persons in Paris to contribute sums of

*Rarup, Theoretisches Handbuck dey Lebensversicherung. 1871,
t Cantor, I., p. 522.
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money the interest of which should be divided annu-
ally among the surviving members. The French gov-
ernment regarded this procedure as an easy method
of obtaining money and established from 1689 to 17569
ten state tontines which, however, were all given up
in 1770, as it had been proved that this kind of state
loan was not lucrative.

In the meantime two steps had been taken which,
by using the results of mathematical science, provided
a secure foundation for the business of insurance.
Pascal and Fermat had outlined the calculation of
contingencies, and the Dutch statesman De Witt had
made use of their methods to lay down in a separate
treatise the principles of annuity insurance based upon
the birth and death lists of several cities of Holland.
On the other hand, Sir William Petty, in 1662, in a
work on political arithmetic* contributed the first val-
uable investigations concerning general mortality—a
work which induced John Graunt to construct mor-
tality tables. Mortality tables were also published by
Kaspar Neumann, a Breslau clergyman, in 1692, and
these attracted such attention that the Royal Society
of London commissioned the astronomer Halley to
verify these tables. With the aid of Neumann’s ma-
terial Halley constructed the first complete tables of
mortality for the various ages. Although these tables
did not obtain the recognition they merited until half
a century later, they furnished the foundation for all

*Recently republished in inexpensive form in Cassell’s National Library.
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later works of this kind, and hence Halley is justly
called the inventor of mortality tables.

The first modern life-insurance institutions were
products of English enterprise. In the years 1698 and
1699 there arose two unimportant companies whose
field of operations remained limited. In the year
1705, however, there appeared in London the ‘“Amic-
able” which continued its corporate existence until
1866. The ¢ Royal Exchange” and ¢ London Assur-
ance Corporation,” two older associations for fire and
marine insurance, included life insurance in their busi-
ness in 1721, and are still in existence. There was soon
felt among the managers of such institutions the im-
perative need for reliable mortality tables, a fact which
resulted in Halley’s work being rescued from oblivion
by Thomas Simpson, and in James Dodson’s project-
ing the first table of premiums, on a rising scale, after
Halley’s method. The oldest company which used
as a basis these scientific innovations was the ¢ Society
for Equitable Assurances on Lives and Survivorships,”
founded in 1765.

While at the beginning of the nineteenth century
eight life insurance companies were already carrying
on their beneficent work in England, there was at the
same time not a single institution of this kind upon
the Continent, in spite of the progress which had been
made in the science of insurance by Leibnitz, the Ber-
noullis, Euler and others. In France there appeared in
1819 <“La compagnie d’ assurances générales sur la
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vie.” In Bremen the founding of a life insurance com-
pany was frustrated by the disturbances of the war in
1806. It was not until 1828 that the two oldest Ger-
man companies were formed, the one in Liibeck, the
other in Gotha under the management of Ernst Wil-
helm Arnoldi, the ¢¢ Father of German Insurance.”

The nineteenth century has substantially enriched
the literature of mortality tables, in such tables as
those compiled by the Englishmen Arthur Morgan
(in the eighteenth century) and Farr, by the Belgian
Quetelet, and by the Germans, Brune, Heym, Fischer,
Wittstein, and Scheffler. A recent acquisition in this
field is the table of deaths compiled in accordance
with the vote of the international statistical congress
at Budapest in 1876, which gives the mortality of the
population of the German Empire for the ten years
1871-1881. Further development and advancement
of the science of insurance is provided for by the
¢¢ Institute of Actuaries” founded in London in 1849—
an academic school with examinations in all branches
of the subject. There has also been in Berlin since
1868 a ¢¢College of the Science of Insurance,” but
it offers no opportunity for study and no examina-
tions.

The following compilations furnish a survey of the
conditions of insurance in the year 1890 and of its
development in Germany.* There were in Germany:

*Karup, Theoretisches Handbuck der Lebensversicherung, 1871. Johnson,
Universal Cyclopadia, under ** Life-Insurance.”



60 HISTORY OF MATHEMATICS.

AT THE BEGINNING NUMBER OF NUMBER OF
OF THE YEAR LIFE INS, PERSONS
co's. INSURED
1852 12 46,980
1858 20 90,128
1866 82 805,483
1890 49 secsees

There were in 1890 :

FOR THE 8UM
IN ROUND NUMBERS
(MILLION MARKS)

170
800
900
4250

AMOUNT OF INSURANCE

IN FORCE

4250 million marks

IN NUMBER OF LIFE
INSURANCE CO'S.
Germany......... EETETRTIIEY 49
Great Britain and Ireland...... 75 900
France.........cco00veinnnnnns 17 3250
Rest of Europe.........c.c.... 58 3200
United States of America...... 48 4000

“

pounds
francs
francs
dollars

All that the eighteenth century developed or dis-
covered has been further advanced in the nineteenth.
The center of gravity of practical calculation lies in
commercial arithmetic. This is also finding expres-

sion in an exceedingly rich literature which has been
extended in an exhaustive manner in all its details,
but which contains nothing essentially new except the
methods of calculating interest in accounts current.



III. ALGEBRA.
A. GENERAL SURVEY.

HE beginnings of general mathematical science
are the first important outcome of special studies
of number and magnitude; they can be traced back
to the earliest times, and their circle has only gradu-
ally been expanded and completed. The first period
reaches up to and includes the learning of the Arabs;
its contributions culminate in the complete solution
of the quadratic equation of one unknown quantity,
and in the trial method, chiefly by means of geometry,
of solving equations of the third and fourth degrees.
The second period includes the beginning of the
development of the mathematical sciences among the
peoples of the West from the eighth century to the
middle of the seventeenth. The time of Gerbert forms
the beginning and the time of Kepler the end of this
period. Calculations with abstract quantities receive
a material simplification in form through the use of
abbreviated expressions for the development of for-
mule; the most important achievement lies in the
purely algebraic solution of equations of the third and
fourth degrees by means of radicals.
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The third period begins with Leibnitz and Newton
and extends from the middle of the seventeenth cen-
tury to the present time. In the first and larger part
of this period a new light was diffused over fields
which up to that time had been only partially ex-
plored, by the discovery of the methods of higher
analysis. At the end of this first epoch there appeared

‘certain mathematicians who devoted themselves to
the study of combinations but failed to reach the
lofty points of view of a Leibnitz. Euler and La-
grange, thereupon, assumed the leadership in the field
of pure analysis. "Euler led the way with more than
seven hundred dissertations treating all branches of
mathematics. The name of the great Gauss, who
drew from the works of Newton and Euler the first
nourishment for his creative genius, adorns the be-
ginning of the second epoch of the third period.
Through the publication of more than fifty large
memoirs and a number of smaller ones, not alone on
mathematical subjects but also on physics and astron-
omy, he set in motion a multitude of impulses in the
most varied directions. At this time, too, there opened
new fields in which men like Abel, Jacobi, Cauchy,
Dirichlet, Riemann, Weierstrass and others have made
a series of most beautiful discoveries.
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B. FIRST PERIOD.
FROM THE EARLIEST TIMES TO THE ARABS.
I. General Arithmetic.

However meagre the information which describes
the evolution of mathematical knowledge among the
earliest peoples, still we find isolated attempts among
the Egyptians to express the fundamental processes
by means of signs. In the earliest mathematical pa-
pyrus* we find as the sign of addition a pair of walk-
ing legs travelling in the direction toward which the
birds pictured are looking. The sign for subtraction
consists of three parallel horizontal arrows. The sign
for equality is (/\ Computations are also to be found
which show that the Egyptians were able to solve sim-
ple problems in the field of arithmetic and geometric
progressions. The last remark is true also of the
Babylonians. They assumed that during the first five
of the fifteen days between new moon and full moon,
the gain in the lighted portion of its disc (which was
divided into 240 parts) could be represented by a geo-
metric progression, during the ten following days by
an arithmetic progression. Of the 240 parts there
were visible on the first, second, third . . . fifteenth
day

* Cantor, 1., p. 87.
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5 10 20 40 1.20
1.36 1.62 2.08 2.24 2.40
2.56 3.12 3.28 3.44 4.

The system of notation is sexagesimal, so that we are
to take 3.28 =3 X 60 428 =208.* Besides this there
have been found on ancient Babylonian monuments
the first sixty squares and the first thirty-two cubes
in the sexagesimal system of notation.

The spoils of Greek treasures are far richer. Even
the name of the entire science 3 pafyuarici comes from
the Greek language. In the time of Plato the word
pabijpare included all that was considered worthy of
scientific instruction. It was not until the time of the
Peripatetics, when the art of computation (logistic)
and arithmetic, plane and solid geometry, astronomy
and music were enumerated in the list of mathemat-
ical sciences, that the word received its special signifi-
cance. Especially with Heron of Alexandria logistic
appears as elementary arithmetic, while arithmetic so
called is a science involving the theory of numbers.

Greek arithmetic and algebra appeared almost
always under the guise of geometry, although the
purely arithmetic and algebraic method of thinking
was not altogether lacking, especially in later times.
Aristotlet is familiar with the representation of quan-
tities by letters of the alphabet, even when those
quantities do not represent line-segments ; he says in

*Cantor, 1., p. 81. + Cantor, 1., p. 240.
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one place: ““If A is the moving force, B that which is
moved, T the distance, and A the time, etc.” By the
time of Pappus there had already been developed a
kind of reckoning with capital letters, since he was
able to distinguish as many general quantities as there
were such letters in the alphabet. (The small letters
a, B, y, stood for the numbers 1, 2, 3, . ..) Aristotle
has a special word for ¢‘continuous” and a definition
for continuous quantities. Diophantus went farther
than any of the other Greek writers. With him there
already appear expressions for known and unknown
quantities. Hippocrates calls the square of a number
Svaps (power), a word which was transferred to the
Latin as pofentia and obtained later its special mathe-
matical significance. Diophantus gives particular
names to all powers of unknown quantities up to the
sixth, and introduces them in abbreviated forms, so
that 3, a3, x4, x5 «%, appear as &, «¥, 88, 8% x«d.
The sign for known numbers is u®. In subtraction
Diophantus makes use of the sign n (an inverted and
abridged y); ¢, an abbreviation for {so:, equal, appears
as the sign of equality. A term of an expression is
called el8os; this word went into Latin as specses and
was used in forming the title aritimetica speciosa=al-
gebra.* The formule are usually given in words and
are represented geometrically, as long as they have to
do only with expressions of the second dimension. The
first ten propositions in the second book of Euclid,

*Cantor, 1., p. 442.



66 HISTORY OF MATHEMATICS.

for example, are enunciations in words and geometric
figures, and correspond among others to the expres-
sions a(b+c+d..)=ab+act+ad+....., (a40)
=a+ 2ab+ B =(a+ b)a+ (a+ )b.

Geometry was with the Greeks also a means for in-
vestigations in the theory of numbers. This is seen,
for instance, in the remarks concerning gnomon-num-
bers. Among the Pythagoreans a square out of which
a corner was cut in the shape of a square was called a
gnomon. Euclid also used this expression for the
figure ABCDEF which is obtained from the parallelo-
gram A BCH’ by cutting out the parallelogram DB’ FE.
The gnomon-number of the Pythagoreans is 272-4-1;
for when 4BCH' is a square, the square upon DE =n

A _F ogd

B ¢

can be made equal to the square on BC=#n-}1 by
adding the square BE=1 X1 and the rectangles 4 £
=CE=1Xn, since we have 74 22+ 1=(n41)%
Expressions like plane and solid numbers used for
the contents of spatial magnitudes of two and three

dimensions also serve to indicate the constant tend-.
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ency to objectify mathematical thought by means of
geometry.

All that was known concerning numbers up to the
third century B. C., Euclid comprehended in a general
survey. In his Elements he speaks of magnitudes, with-
out, however, explaining this concept, and he under-
stands -by this term, besides lines, angles, surfaces
and solids, the natural numbers.* The difference be-
tween even and odd, between prime and composite
numbers, the method for finding the least common
multiple and the greatest common divisor, the con-
struction of rational right-angled triangles according
to Plato and the Pythagoreans—all these are familiar
to him. A method (the ¢sieve”) for sorting out
prime numbers originated with Eratosthenes. It con-
sists in writing down all the odd numbers from 3
on, and then striking out all multiplesof 3,5, 7. ..
Diophantus stated that numbers of the form 4? + 2425

. -+ 8% represent a square and also that numbers of the

form (a?+ 4%)(c2 4+ d?) can represent a sum of two
squares in two ways; for (ac+ 6d)?+ (ad—bc)d=
(ac—8d)? + (ad+ bc)? = (a® 4 4%) (2 + d?).

The knowledge of the Greeks in the field of ele-
mentary series was quite comprehensive. The Pythag-
oreans began with the series of even and odd num-
bers. The sum of the natural numbers gives the
triangular number, the sum of the odd numbers the
square, the sum of the even numbers gives the hetero-

*Treutlein.
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mecic (oblong) number of the form n(z-+1). Square
numbers they also recognised as the sum of two suc-
cessive triangular numbers. The Neo-Pythagoreans
and the Neo-Platonists made a study not only of po-
lygonal but also of pyramidal numbers. Euclid treated
geometrical progressions in his Elements. He ob-
tained the sum of the series 14+2-4448... and
noticed that when the sum of this series is a prime
number, a ‘‘perfect number” results from multiply-
ing it by the last term of the series (14-244=7;
TX4=28; 28=1+42+44+T7+14; cf. p. 35). In-
finite convergent series appear frequently in the works
of Archimedes in the form of geometric series whose
ratios are proper fractions ; for example, in calculating
the area of the segment of a parabola, where the value
of the series 141+ /5. .. is found to be 4. He
also performs a number of calculations for obtaining
the sum of an infinite series for the purpose of esti-
mating areas and volumes. His methods are a sub-
stitute for the modern methods of integration, which
are used in cases of this kind, so that expressions like

xdx=1}c2, x?dx=1c3
Jrar=ya, (=4

[] 0
and other similar expressions are in their import and
essence quite familiar to him.*
The introduction of the irrational is to be traced
back to Pythagoras, since he recognised that the hy-

*Zeuthen, Die Lekre vom dem Kegelschnitten im Alterium. Deutsch von
v. Fischer-Benzon. 1886.
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potenuse of a right-angled isosceles triangle is in-
commensurable with its sides. The Pythagorean
Theodorus of Cyrene proved the irrationality of the
square roots of 3, 5, 7, . . . 17.*

Archytas classified numbers in general as rational
and irrational. Euclid devoted to irrational quantities
a particularly exhaustive investigation in his Ele-
ments, a work which belongs to the domain of Arith-
metic as much as to that of Geometry. Three books
among the thirteen, the seventh, eighth and ninth,
are of purely arithmetic contents, and in the tenth
book there appears a carefully wrought-out theory of
‘‘Incommensurable Quantities,” that is, of irrational
ﬁuantities, as well as a consideration of geometric
ratios. At the end of this book Euclid shows in a
very ingenious manner that the side of a square and
its diagonal are incommensurable; the demonstration
culminates in the assertion that in the case of a ra-
tional relationship between these two quantities a
number must have at the same time the properties of
an even and an odd number.t In his measurement
of the circle Archimedes calculated quite a number of
approximate values. for square roots; for example,

1351 = 265
Nothing definite, however, is known concerning the

*Cantor, 1., p. 170.

1 Montucla, 1., p. 208. Montucla says that he knew an architect who lived
in the firm conviction that the square root of 2 could be represented as a
ratio of finite integers, and who assured him that by this method he had
already reached the 100th decimal
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method he used. Heron also was acquainted with
such approximate values (} instead of V2, §§ instead
of ¥/3);* and although he did not shrink from the
labor of obtaining approximate values for square
roots, in the majority of cases he contented himself
with the well-known approximation V' a? :!:b=a:l:§6;,
e g,V63=18_"1=8—4. Incase greater ex-
actness was necessary, Heront used the formula
Vats=a+i+1+4+L1+4+ ... Incidentally he used
the identity V/a% =aV'4 and asserted, for example,
that VI8 =163 =613 =638 =10+ } + o
Moreover, we find in Heron’s Stereometrica the first
example of the square root of a negative number,
namely V81— 144, which, however, without further
consideration, is put down by the computer as 8 less
v Which shows that negative quantities were un-
known among the Greeks. It is true that Diophantus
employed differences, but only those in which the
minuend was greater than the subtrahend. Through
Theon we are made acquainted with another method
of extracting the square root; it corresponds with the
method in use at present, with the exception that the
Babylonian sexagesimal fractions are used, as was
customary until the introduction of decimal fractions.

Furthermore, we find in Aristotle traces of the
theory of combinations, and in Archimedes an at-
tempt at the representation of a quantity which in-

*Cantor, 1., p. 368. t Tannery in Bordeaxx Mém., 1V., 1881.
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creases beyond all limits, first in his extension of the
number-system,’ and then in his work entitled yap-
pirqs (Latin arenarius, the sand-reckoner). Archi-
medes arranges the first eight orders of the decimal
system together in an octad; 108 octads constitute a
period, and then these periods are arranged again
according to the same law. In the sand-reckoning,
Archimedes solves the problem of estimating the
number of grains of sand that can be contained in a
sphere which includes the whole universe. He as-
sumes that 10,000 grains of sand take up the space of
a poppy-seed, and he finds the sum of all the grains
to be 10 000 000 units of the eighth period of his sys-
tem, or 10%8. It is possible that Archimedes in these
observations intended to create a counterpart to the
domain of infinitesimal quantities which appeared in
his summations of series, a counterpart not accessible
to the ordinary arithmetic.

In the fragments with which we are acquainted
from the writings of Roman surveyors (agrimensores)
there are but few arithmetic portions, these having
to do with polygonal and pyramidal numbers. Ob-
viously they are of Greek origin, and the faulty style
in parts proves that there was among the Romans no
adequate comprehension of matters of this kind.

The writings of the Hindu mathematicians are ex-
ceedingly rich in matters of arithmetic. Their sym-
bolism was quite highly developed at an early date.*

*Cantor, 1., p. 558.
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Aryabhatta calls the unknown quantity gu/ika (¢‘little
ball’), later yavattavat, or abbreviated ya (‘‘as much
as’). The known quantity is called rupaka or ru
(““coin”). If one quantity is to be added to another,
it is placed after it without any particular sign. The
same method is followed in subtraction, only in this
case a dot is placed over the coefficient of the subtra-
hend so that positive (d%ana, assets) and negative quan-
tities (&skaya, liabilities) can be distinguished. The
powers of a quantity also receive special designations.
The second power is varga or va, the third ghana or
gha, the fourth va va, the fifth va gha ghata, the sixth
va gha, the seventh va ve gha ghata (ghata signifies
addition). The irrational square root is called Zarana
or 2a. In the Culvasutras, which are classed among
the religious books of the Hindus, but which in addi-
tion contain certain arithmetic and geometric deduc-
tions, the word %arana appears in conjunction with
numerals; dvikarani— V2, trikarani=1V'3, dagakarani
=1/10. If several unknown quantities are to be dis-
tinguished, the first is called yaz; the others are named
after the colors: kalaka or ka (black), nilaka or ni
(blue), pitaka or pi (yellow); for example, by ya Zabla
is meant the quantity x-y, since dkavita or bka indi-
cates multiplication. There is also a word for ¢“equal ”’;
but as a rule it is not used, since the mere placing of
a number under another denotes their equality.

In the extension of the domain of numbers to in-
clude negative quantities the Hindus were certainly
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successful. They used them in their calculations,
and obtained them as roots of equations, but never
regarded them as proper solutions. Bhaskara was
even aware that a square root can be both positive
and negative, and also that V—a does not exist for
the ordinary number-system. He says: ¢¢The square
of a positive as well as of a negative number is posi-
tive, and the square root of a positive number is
double, positive, and negative. There can be no
square root of a negative number, for this is no
square.” *

The fundamental operations of the Hindus, of
which there were six, included raising to powers and
extracting roots. In the extraction of square and cube
roots Aryabhatta used the formule for (a4 4)* and
(a+ %)%, and he was aware of the advantage of sepa-
rating the number into periods of two and three fig-
ures each, respectively. Aryabhatta called the square
root varga mula, and the cube root gkana mula (mula,
root, used also of plants). Transformations of ex-
pressions involving square roots were also known.
Bhaskara applied the formulat , |

Va+1/b—1/} (a+Va=3)+V} (ae—Vva3=3),

and was also able to reduce fractions with square roots
in the denominator to forms having a rational denomi-
nator. In some cases the approximation methods for
square root closely resemble those of the Greeks.

* Cantor, 1., p. 58s. t Cantor, 1., p. 586.
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Problems in transpositions, of which only a few
traces are found among the Greeks, occupy consider-
able attention among the Indians. Bhaskara made
use of formule for permutations and combinations*
with and without repetitions, and he was acquainted
with quite a number of propositions ‘involving the
theory of numbers, which have reference to quadratic
and cubic remainders as well as to rational right-
angled triangles. But it is noticeable that we discover
among the Indians nothing concerning perfect, ami-
cable, defective, or redundant numbers. The knowl-
edge of figurate numbers, which certain of the Greek
schools cultivated with especial zeal, is likewise want-
ing. On the contrary, we find in Aryabhatta, Brah-
magupta and Bhaskara summations of arithmetic
series, as well as of the series 12 -224-3%4 ..., 138
+ 284384 ... The geometric series also appears in
~ the works of Bhaskara. As regards calculation with

a
zero, Bhaskara was aware that o=

The Chinese also show in their literature some
traces of arithmetic investigations; for example, the
binomial coefficients for the first eight powers are
given by Chu shi kih in the year 1303 as an ¢‘old
method.” There is more to be found among the
Arabs. Here we come at the outset upon the name of
Al Khowarazmi, whose Algebra, which was probably
translated into Latin by Zthelhard of Bath, opens

*Cantor, I, p. 579.
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with the words* <Al Khowarazmi has spoken.” In
the Latin translation this name appears as A/goritmi,
and to-day appears as algorism or algorithm, a word
completely separated from all remembrance of Al Kho-
warazmi, and much used for any method of computa-
tion commonly employed and proceeding according
to definite rules. In the beginning of the sixteenth
century there appears in a published mathematical
work a ¢‘philosophus nomine Algorithmus,” a sufficient
proof that the author knew the real meaning of the
word algorism. But after this, all knowledge of the
fact seems to disappear, and it was not until our own
century that it was rediscovered by Reinaud and Bon-
compagni.t

Al Khowarazmi increased his knowledge by study-
ing the Greek and Indian models. A known quantity
he calls a number, the unknown quantity séd» (root)
and its square mal (power). In Al Karkhi we find the
expression Zab (cube) for the third power, and there
are formed from these expressions mal mal=—x*, mal
kab =235, kab kab=x", mal mal kab=x", etc. He also
treats simple expressions with square roots, but with-
out arriving at the results of the Hindus. There is a
passage in Omar Khayyam from which it is to be in-
ferred that the extraction of roots was always per-
formed by the help of the formula for (a4 4)*. Al
Kalsadi} contributed something new by the introduc-

# Cantor, L., p. 671.
t Jahrduch #ber die Fortschritte der Mathematik, 1887, p. 23.
$Cantor, 1., p. 76s.
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tion of a radical sign. Instead of placing the word
Jidr before the number of which the square root was
to be extracted, as was the custom, Al Kalsadi makes
use only of the initial letter <> of this word and places
it over the number, as,

> > S

é=1/2—, -}2=I/2_;-, 5 =2V5.

Among the Eastern Arabs the mathematicians
who investigated the theory of numbers occupied
themselves particularly with the attempt to discover
rational right-angled triangles and with the problem
of finding a square which, if increased or diminished
by a given number, still gives a square. An anony-

mous writer, for example, gave a portion of the the-
ory of quadratic remainders, and Al Khojandi also
demonstrated the proposition that upon the hypoth-
esis of rational numbers the sum of two cubes cannot
be another third power. There was also some knowl-
edge of cubic remainders, as is seen in the applica-
tion by Avicenna of the proof by excess of nines in
the formation of powers. This mathematician gives
propositions which can be briefly represented in the
form*
(97+1)1=1(mod9), (In=x2)2=4(mod9),
(741303 =9n+4) = (In+ 7)3=1(m0od9), etc.
Ibn al Banna has deductions of a similar kind which
form the basis of a proof by eights and sevens.}
In the domain of series the Arabs were acquainted

#Cantor, 1., p. 712, +Caator, 1., p. 759.
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at least with arithmetic and geometric progressions
and also with the series of squares and cubes. In
this field Greek influence is unmistakable.

2. Algedra.

The work of Ahmes shows that the Egyptians
were possessed of equations of the first degree, and
used in their solution methods systematically chosen.
The unknown x is called %e% (heap); an equation*
appears in the following form: Zeap, its 3, its }, its
%, its whole, gives 37, that is $x | }x+ x4 x=3T.

The ancient Greeks were acquainted with the so-
lution of equations only in geometrical form. No-
where, save in proportions, do we find developed ex-
amples of equations of the first degree which would
show unmistakably that the root of a linear equation
with one unknown was ever determined by the inter-
section of two straight lines; but in the cases of equa-
tions of the second and third degrees there is an
abundance of material. In the matter of notation
Diophantus makes the greatest advance. He calls
the coefficients of the unknown quantity wAjfos. If
there are several unknowns to be distinguished, he
makes use of the ordinal numbers: 6 mpiros dpifuds, 6
8eirepos, 6 Tpiros. An equationt appears in his works
in the abbreviated form:

#Matthiessen, Grundsiige der antiken und modernen Algebra der littera-
len Gleichungen, 1878, p. 269. Hereafter referred to as Matthiessen.

t Matthiessen, p. 269.
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Ba oy s 5 pp%iB, i €., 228 4 at=4dx—12.
Diophantus classifies equations not according to the
degree, but according to the number of essentially
distinct terms. For this purpose he gives definite
rules as to how equations can be brought to their sim-
plest form, that is, the form in which both members
of the equation have only positive terms. Practical
problems which lead to equations of the first degree
can be found in the works of Archimedes and Heron;
the latter gives some of the so-called ¢‘fountain prob-
lems,” which remind one of certain passages in the
work of Ahmes. Equations of the second degree
were mostly in the form of proportions, and this
method of operation in the domain of a geometric
algebra was well known to the Greeks. They un-
doubtedly understood how to represent by geometric'
figures equations of the form

al

, ,
Z,—,x:b, %x-l— %y+ e =m,

where all quantities are linear. Every calculation of
means in two equal ratios, i. e., in a proportion, was
really nothing more than the solution of an equation.
The Pythagorean school was acquainted with the
arithmetic, the geometric and the harmonic means of
two quantities; that is, they were able to solve geo-
metrically the equations

02 , x2=ab, x= ff:b.

According to Nicomachus, Philolaus called the cube

x=
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with its six surfaces, its eight corners, and its twelve
edges, the geometric harmony, because it presented
equal measurements in all directions; from this fact,
it is said, the terms ‘“harmonic mean” and ¢harmo-
nic proportion’ were derived, the relationship being :

12—8 12 2-6-12 2ab

6= 6" whence 8=m, i e, x= rEYS
The number of distinct proportions was later in-
creased to ten, although nothing essentially new was
gained thereby. Euclid gives thorough analyses of
proportions, that is, of the geometric solution of equa-
tions of the first degree and of incomplete quadratics;
these, however, are not given as his own work, but as
the result of the labors of Eudoxus.

The solution of the equation of the second degree
by the geometric method of applying areas, largely
employed by the ancients, especially by Euclid, de-
serves particular attention.

In order to solve the equation

234 ax=142
by Euclid’s method, the problem must first be put in
the following form :
A E - B

—

D [
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«To the segment 4B =a apply the rectangle DH
of known area=—243, in such a way that CH shall be a
square.” The figure shows that for CK=,, FH =
a? 4 2x-2 4 (5)?=4+ (%) 7 but by the Pythagorean
proposition, &+ (%)?=¢?, whence EH=c=3+x,
from which we have x=c—4. The solution obtained
by applying areas, in which case the square root is
always regarded as positive, is accordingly nothing

more than a constructive representation of the value
— a2 __
r=—f+VE+ () =c—1

In the same manner Euclid solves all equations of

the form
x3tax+52=0,

and he remarks in passing that where V53— (%)%
according to our notation, appears, the condition for
a possible solution is 4> 7. Negative quantities are
nowhere considered ; but there is ground for inferring
that in the case of two positive solutions the Greeks
regarded both and that they also applied their method
of solution to quadratic equations with numerical co-
efficients.* By applying their knowledge of propor-
tion, they were able to solve not only equations of the
form x?+ax456=0, but also of the more general
form
ax?tax+42=0,

for a as the ratio of two line-segments. Apollonius

*Zeuthen, Die Lekre von den Kegelschnitiem im Altertum. Deutsch von
v. Fischer-Benzon. 1886.
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accomplished this with the aid of a conic, having the
equation
P=pxxial

The Greeks were accordingly able to solve every gen-
eral equation of the second degree having two essen-
tially different coefficients, which might also contain
numerical quantities, and to represent their positive
roots geometrically.

The three principal forms of equations of the sec-
ond degree first to be freed from geometric statement
and completely solved, are

Bt pr=g, P=px+tyq, pr=2"+y¢.

The solution consisted in applying an area, the prob-
lem being to apply to a given line a rectangle in such
a manner that it would either contain a given area or
be greater or less than this given area by a constant.
For these three conditions there arose the technical
expressions mapafolij, vmepBoliy, @Aewns, which after
Archimedes came to refer to conics.*

In later times, with Heron and Diophantus, the
solution of equations of the second degree was partly
freed from the geometric representation, and passed
into the form of an arithmetic computation proper
(while disregarding the second sign in the square
root).

The equation of the third degree, owing to its
dependence on geometric problems, played an im-

* Tannery in Bordeanx Mém., IV,
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portant part among the Greeks. The problem of the
duplication (and also the multiplication) of the cube
attained especial celebrity. This problem demands
nothing more than the solution of the continued pro-
portion a:x=ux:y=y:2a, that is, of the equation
23 =243 (in general x®=Z48%). This problem is very
old and was considered an especially important one
by the leading Greek mathematicians. Of this we
have evidence in a passage of Euripides in which he
makes King Minos say concerning the tomb of Glau-
cus which is to be rebuilt*: ‘¢ The enclosure is too
small for a royal tomb : double it, but fail not in the
cubical form.” The numerous solutions of the equa-
tion x%=24% obtained by Hippocrates, Plato, Me-
nazchmus, Archytas and others, followed the geomet-
ric form, and in time the horizon was so considerably
extended in this direction that Archimedes in the
study of sections of a sphere solved equations of the
form
a3 —ax? 4 5% =0

by the intersection of two lines of the second degree,
and in doing so also investigated the conditions to be
fulfilled in order that there should be no root or two
or three roots between 0 and @. Since the method
of reduction by means of which Archimedes obtains
the equation x®—ax? 4 4% =0 can be applied with
considerable ease to all forms of equations of the third
degree, the merit of having set forth these equations

*Cantor, 1., p. 199.
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in a comprehensive manner and of having solved one
of their principal groups by geometric methods be-
longs without question to the Greeks.*

We find the first trace of indeterminate equations
in the cattle problem (Problema bovinum) of Archi-
medes.

This problem, which was published in the year 1778 by Les-
sing, from a codex in the library at Wolfenbiittel, as the first of
four unprinted fragments of Greek anthology, is given in twenty-
two distichs. In all probability it originated directly with Archi-
medes who desired to show by means of this example how, pro-
ceeding from simple numerical quantities, one could easily arrive
at very large numbers by the interweaving of conditions. The
problem runs something as follows: ¢

The sun had a herd of bulls and cows of different colors. (1)
Of Bulls the white (/#) were in number (} 4 4) of the black (X)
and the yellow (V); the black (X') were (4 +#) of the dappled (Z)
«nd the yellow (Y); the dappled (Z) were (} +4) of the white
(1+") and the yellow (¥). (2) Of Cows which had the same colors
(w, v, 3, 2), w=QF+3(X+x), =G +8(Z+2), z2=@+D
(Y43, y=@+4$)(W+w). W4 X is to be a square; V42
a triangular number.

The problem presents nine equations with ten unknowns :

W={+8§)X+Y X=@E(+89Z2+Y
Z=@3+PW+Y w=(}+(X+2)
z=0¢+4(Z+2) z=@+INY¥Y+y
y=3+HW+w) W4 X=mn?
_m*4m
VY4 2Z=- -

*Zeuthen, Die Lekre von den Kegelschnitten im Altertum. Deutsch von
v. Fischer-Benzon 1886.

t Krumbiegel und Amthor, Das Problema bovi des Archimedes. Schis-
milch's Zestschrift, Bd. 25, HL. A.; Gow, p. 99.
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According to Amthor the solution is obtained by Pell's equation
£—92°8°7°11°29°853 u? =1, assuming the condition #=0 (mod.
2°4657), in which process there arises a continued fraction with a
period of ninety-one convergents. If we omit the last two condi-
tions, we get as the total number of cattle 5916 837175686, a
number which is nevertheless much smaller than that involved in
the sand-reckoning of Archimedes.

But the name of Diophantus is most closely con-
nected with systems of equations of this kind. He
endeavors to satisfy his indeterminate equations not
by means of whole numbers, but merely by means of
rational numbers (always excluding negative quanti-

ties) of the form 2 where p and ¢ must be positive in-

tegers. It appears that Diophantus did not proceed
in this field according to general methods, but rather
by ingeniously following out special cases. At least
those of his solutions of indeterminate equations of
the first and second degrees with which we are ac-
quainted permit of no other inference. Diophantus
seems to have been not a little influenced by earlier
works, such as those of Heron and Hypsicles. It may
therefore be assumed that even before the Christian
era there existed an indeterminate analysis upon
which Diophantus could build.*

The Hindu algebra reminds us in many respects
of Diophantus and Heron. As in the case of Dio-
phantus, the negative roots of an equation are not
admitted as solutions, but they are consciously set

#P, Tannery, in Mémoires de Bordeaux, 1880. This view of Tannery’s is
controverted by Heath, T. L., Diophantos of Alexandria, 188s, p. 135.
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aside, which marks an advance upon Diophantus.
The transformation of equations, the combination of
terms containing the same powers of the unknown, is
also performed as in the works of Diophantus. The
following is the representation of an equation accord-
ing to Bhaskara :*

vava2|val|ru30

vava0|va0|ru 8’Le.'

2x3—x+4+30=0x340x+ 8, or 22 —x 4 30=8.
Equations of the first degree appear not only with
one, but also with several unknowns. The Hindu
method of treating equations of the second degree
shows material advance. In the first place, ax?+ bx
=c¢ is considered the only typet instead of the three
Greek forms ax? 4 bx=c¢, bx 4 c=ax3, ax? + ¢ =bx.
From this is easily derived 443x? 4 4a¢bx —4ac, and
then (2ax + 5)? =4ac -+ 5%, whence it follows that
— b+v Z&H-—b’.
2a

Bhaskara goes still further. He considers both signs
of the square root and also knows when it cannot be
extracted. The two values of the root are, however,
admitted by him as solutions only when both are posi-

tive,—evidently because his quadratic equations ap-
pear exclusively in connection with practical problems
of geometric form. Bhaskara also solves equations
of the third and fourth degrees in cases where these

*Matthiessen, p. 269. + Cantor, 1., p. 585.
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equations can be reduced to equations of the second
degree by means of advantageous transformations and
the introduction of auxiliary quantities.

The indeterminate analysis of the Hindus is espe-
cially prominent. Here in contrast to Diophantus
only solutions in positive integers are admitted. In-
determinate equations of the first degree with two or
more unknowns had already been solved by Arya-
bhatta, and after him by Bhaskara, by a method in
which the Euclidean algorism for finding the greatest
common divisor is used ; so that the method of solu-
tion corresponds at least in its fundamentals with the
method of continued fractions. Indeterminate equa-
tions of the second degree, for exampie those of the
form xy—ax -+ byt ¢, are solved by arbitrarily as-
signing a value to y and then obtaining x, or geo-
metrically by the application of areas, or by a cyclic
method.* This cyclic method does not necessarily
lead to the desired end, but may nevertheless, by a
skilful selection of auxiliary quantities, give integ-
ral values. It consists in solving in the first place,
instead of the equation ax?4 b=c¢y? the equation
ax?+1=)% This is done by the aid of the empiri-
cally assumed equation ¢4?+ B=C? from which
other equations of the same form, ¢4+ B,=C}, can
be deduced by the solution of indeterminate equations
of the first degree. By means of skilful combinations

*Cantor, L., p. so1.
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the equations @4+ B,=C3 furnish a solution of
ax? 4 1=)3.%

The algebra of the Chinese, at least in the earliest
period, has this in common with the Greek, that equa-
tions of the second degree are solved geometrically.
In later times there appears to have been developed
a method of approximation for determining the roots
of higher algebraic equations. For the solution of in-
determinate equations of the first degree the Chinese
developed an independent method. It bears the name
of the ¢“great expansion’ and its discovery is ascribed
to Sun tse, who lived in the third century A. D. This
method can best be briefly characterised by the fol-
lowing example: Required a number x which when
divided by 7, 11, 15 gives respectively the remainders
2,5, 7. Let 4, 4y, 43, be found so that

11:15-4 157k

— 7 =qa+4# 1 =@+
7-11-4
—lg—! =¢s5+ v¢5

we have, for example, £ =2, 43 =2, £3=8, and ob-
tain the further results
11-15-2=330, 330-2= 660,
15- 7:-2=210, 210-5=1050,
7-11-8=6186, 616-7—=4312,
6022 247
71118 =° t 718

x==247 is then a solution of the given equation.t

660 4 1050 + 4312 =6022 ; -

#*Cantor, L., p.593.  tL. Matthiessen in Schlémilch's Zeitschrift, XXVI.
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In the writing of their equations the Chinese make
as little use as the Hindus of a sign of equality. The
positive coefficients were written in red, the negative
in black. As a rule e is placed beside the absolute
term of the equation and ywen beside the coefficient of
the first power ; the rest can be inferred from the ex-
ample 14x3 —27x=17,* where » and 4 indicate the
color of the coefficient :

14 or A4 or A4
,00 ,00 ,00
L2 Tyuen 227 2 Tyuen
ATtée ATtée A1,

The Arabs were pupils of both the Hindus and
the Greeks. They made use of the methods of their
Greek and Hindu predecessors and developed them,
especially in the direction of methods of calculation.
Here we find the origin of the word algebra in the
writings of Al Khowarazmi who, in the title of his
work, speaks of ‘‘al-jabr wa'l mugabalal,” i. e., the
science of redintegration and equation. This expres-
sion denotes two of the principal operations used by
the Arabs in the arrangement of equations. When
from the equation x® 4 »=x2 4 px } » the new equa-
tion 23 =3 4 px is formed, this is called a/ mugabalak;
the transformation which gives from the equation‘
px —g=x% the equation pax=x?-+ ¢, a transforma-
tion which was considered of great importance by the

*Cantor, 1., p. 643.
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ancients, was called a/-jabr, and this name was ex-
tended to the science which deals in general with
equations.

The earlier Arabs wrote out their equations in
words, as for example, Al Khowarazmi* (in the Latin
translation):

Census et quinque radices equantur viginti quatuor
22 4+ b - = 24;

and Omar Khayyam,

Cubus, latera et numerus aequales sunt quadratis
2 4 bx + ¢ = ax3,

In later times there arose among the Arabs quite an
extended symbolism. This notation made the most
marked progress among the Western Arabs. The
unknown x was called jidr, its square mal; from the
initials of these words they obtained the abbrevia-
tions x= (&%, #?= v. Quantities which follow di-
rectly one after another are added, but a special sign
is used to denote subtractior. ¢ Equals” is denoted
by the final letter of adala (equality), namely, by means
of a final Jam. In Al Kalsadit 3x?=12x 4 63 and
3234 x="T} are represented by

634 2 - 1'7 RN
8 Je 2LSUT H

and the proportion 7:12=84:x is given the form
.- .84.0.12, 0.7,

# Matthiessen, p. 269. t Cantor, I., p. 767.
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Diophantus had already classified equations, not
according to their degree, but according to the num-
ber of their terms. This principle of classification we
find completely developed among the Arabs. Ac-
cording to this principle Al Khowarazmi* forms the
following six groups for equations of the first and
second degrees:

x3=ax (‘‘a square is equal to roots”),

x?=a (“‘a square is equal to a constant’’),

ax =25, tax=6, ¥+ a=0bx, ax+b=2x?
(¢“roots and a constant are equal to a square ).

The Arabs knew how to solve equations of the first
degree by four different methods, only one of which
has particular interest, and that because in modern
algebra it has been developed as a method of approx-
imation for equations of higher degree. This method
of solution, Hindu in its origin, is found in particular
in Ibn al Banna and Al Kalsadi and is there called
the method of the scales. 1t went over into the Latin
translations as the regula falsorum and regula falsi. To
illustrate, let the equation ax 4 6=0 be givent and
let z; and 23 be any numerical quantities; then if we
place az1 4+ 6=y, azg + b=y,

= 23N —7251)
—2
as can readily be seen. Ibn al Banna makes use of
the following graphic plan for the calculation of thc
value of x:

* Matthiessen, p. 270. 1 Matthiessen, p. 277.
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The geometric representation, which with y as a neg-
ative quantity somewhat resembles a pair of scales,
would be as follows, letting OB; =2, OBy =2, B\ C)
=y, BsCy=y;3, OA=x:

C2
o B 4 72
¥ Ba
Cr

From this there results directly

T-Aha_ AN,

x—z3 ¥y’
that is, that the errors in the substitutions bear to
each other the same ratio as the errors in the results,
the method apparently being discovered through geo-
metric considerations.

In the case of equations of the second degree Al
Khowarazmi gives in the first place a purely mechan-
ical solution (negative roots being recognised but not
admitted), and then a proof by means of a geometric
figure. He also undertakes an investigation of the
number of solutions. In the case of

a® + ¢ =bz, from which x=3=+1V'(3)T—,
Al Khowarazmi obtains two solutions, one or none
according as
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#>6 @P=s @'<e
He gives the geometric proof for the correctness of
the solution of an equation like x3 4 2x=15, where
he takes x=3, in two forms, either by means of a
perfectly symmetric figure, or by the gnomon. In
the first case, for AB=x, BC=4}, BD=1, we have

LA

A
B

B
A D

B4+4-3-x+4-(3?=1541, (x4+1)?=16; in the
second we have 2?4 2:1-2x413=1541. In the
treatment of equations of the form ax3 =+ bx*+ =0,
the theory of quadratic equations receives still further
development at the hands of Al Kalsadi.

Equations of higher degree than the second, in
the form in which they presented themselves to the
Arabs in the geometric or stereometric problems of
the Greek type, were not solved by them arithmeti-
cally, but only by geometric methods with the aid
of conics. Here Omar Khayyam* proceeded most
systematically. He solved the following equations
of the third degree geometrically:

* Matthiessen, pp. 367, 894, 945.
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r=x8 a3+ px?—gux, ag'3+ r=gx, x4+ pxi+ gx—r,
gx=ua8, x84 gx=—7paxt x84 pxl=r, 23+ pa?t r—yx,
Pxt=ad, Bt gx—=r, B+r—=pa? a3+ pxt=gx+r.
The following is the method of expression which he
employs in these cases:

““A cube and square are equal to roots ;"
‘“a cube is equal to roots, squares and one number,”
when the equations

adfpaxl—=gx, B=p3tgx+r

are to be expressed. Omar calls all binomial forms
simple equations; trinomial and quadrinomial forms
he calls composite equations. He was unable to solve
the latter, even by geometric methods, in case they
reached the fourth degree.

The indeterminate analysis of the Arabs must be
traced back to Diophantus. In the solution of inde-
terminate equations of the first and second degree
Al Karkhi gives integral and fractional numbers, like
Diophantus, and excludes only irrational quantities.
The Arabs were familiar with a number of proposi-
tions in regard to Pythagorean triangles without hav-
ing investigated this field in a thoroughly systematic
manner.

C. THE SECOND PERIOD.
TO THE MIDDLE OF THE SEVENTEENTH CENTURY.

As long as the cultivation of the sciences among
the Western peoples was almost entirely confined to
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the monasteries, during a period lasting from the
eighth century to the twelfth, no evidence appeared
of any progress in the general theory of numbers.
As in the learned Roman world after the end of the
fifth century, so now men recognised seven liberal
arts,—the frivium, embracing grammar, rhetoric and
dialectics, and the gwadrivium, embracing arithmetic,
geometry, music and astronomy.* But through Arab
influence, operating in part directly and in part
through writings, there followed in Italy and later also
in France and Germany a golden age of mathemat-
ical activity whose influence is prominent in all the
literature of that time. Thus Dante, in the fourth
canto of the Divina Commedia mentions among the

personages
‘. . . who slow their eyes around

Majestically moved, and in their port
Bore eminent authority,”
a Euclid, a Ptolemy, a Hippocrates and an Avicenna.
There also arose, as a further development of cer-
tain famous cloister, cathedral and chapter schools,
and in rare instances, independent of them, the first
universities, at Paris, Oxford, Bologna, and Cam-
bridge, which in the course of the twelfth century
associated the separate faculties, and from the begin-
ning of the thirteenth century became famous as Stu-
dia generalia.t Before long universities were also es-

* Miiller, Historisch-etymologische Studiem #ber mathematische Termino-
logrie, 1887.

t Suter, Die Mathematik auf den Univeysitiitem des Mittelalters, 188;.
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tablished in Germany (Prague, 1348; Vienna, 1365;
Heidelberg, 1386 ; Cologne, 1388 ; Erfurt, 1392 ; Leip-
zig, 1409 ; Rostock, 1419 ; Greifswalde, 1456 ; Basel,
1459 ; Ingolstadt, 1472; Tibingen and Mainz, 1477),
in which for a long while mathematical instruction
constituted merely an appendage to philosophical re-
search. We must look upon Johann von Gmunden as
the first professor in a German university to devote
himself exclusively to the department of mathematics.
From the year 1420 he lectured in Vienna upon mathe-
matical branches only, and no longer upon all depart-
ments of philosophy, a practice which was then uni-
versal.

1. General Arithmetic.

Even Fibonacci made use of words to express
mathematical rules, or represented them by means of
line-segments. On the other hand, we find that Luca
Pacioli, who was far inferior to his predecessor in
arithmetic inventiveness, used the abbreviations ..,
.m., R. for plus, minus, and radix (root). As early as
1484, ten years before Pacioli, Nicolas Chuquet had
written a work, in all probability based upon the re-
searches of Oresme, in which there appear not only
the signs 2 and m (for plus and minus), but also ex-
pressions like

B4.10, B3.17 for £/70, V7.

He also used the Cartesian exponent-notation, and
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the expressions eguipolence, equipolent, for equivalence
and equivalent.*

Distinctively symbolic arithmetic was developed
upon German soil. In German general arithmetic
and algebra, in the Deutsche Coss, the symbols + and
— for plus and minus are characteristic.t They were
in common use while the Italian school was still writ-
ing p and m. The earliest known appearance of these
signs is in a manuscript (Regula Cose vel Algebre) of
the Vienna library, dating from the middle of the fif-
teenth century. In the beginning of the seventeenth
century Reymers and Faulhaber used the sign —+,{
and Peter Roth the sign ++ as minus signs.

Among the Italians of the thirteenth and four-
teenth centuries, in imitation of the Arabs, the course
of an arithmetic operation was expressed entirely in
words. Nevertheless, abbreviations were gradually in-
troduced and Luca Pacioli was acquainted with such
abbreviations to express the first twenty-nine powers
of the unknown quantity. In his treatise the absolute
term and x, x3, 8, x*, x5 x8, . . . are always respec-
tively represented by numero or n°, cosa or co, censo or
ce, cubo or cu, censo de censo or ce.ce, primo relato or
2.7, censo de cuba or ce.cu . . .

The Germans made use of symbols of their own

*A. Marre in Bomcompagni's Bulletino, X111. Jahrbuch iber die Fort-

schritte der Math., 1881, p. 8.

t Treutlein, ‘“ Die deutsche Coss,"” Sckldmilch's Zeitschrift, Bd. 24, Hl. A.
Hereafter referred to as Treutlein.

1 The sign + is first used as a sign of division in Rahn's Teutscke Algebra,
Ziirich, 1659.
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invention. Rudolff and Riese represented the abso-
lute term and the powers of the unknown quantity in
the following manner: Dragma, abbreviated in writ-
ing, ¢; radix (or coss, i. e., root of the equation) is
expressed by a sign resembling an r with a little flour-
ish; sensus by 3; cubus by ¢ with a long flourish on
top in the shape of an / (in the following pages this
will be represented merely by ¢); zensus de sensu (zens-
dezens) by 33, sursolidum by B or §; zensikubus by 3c;
bissursolidum by bifs or Bf; sensus zensui de sensu (zens-
zensdezens) by 333; cubus de cubo by cc.

There are two opinions concerning'the origin of
the x of mathematicians. According to the one, it was
originally an » (radix) written with a flourish which
gradually came to resemble an x, while the original
meaning was forgotten, so that half a century after
Stifel it was read by all mathematicians as x.* The
other explanation depends upon the fact that it is cus-
tomary in Spain to represent an Arabic s by a Latin
x where whole words and sentences are in question ;
for instance the quantity 12x, in Arabic (‘l:' is repre-
sented by 12 xas, more correctly by 12 ses. Accord-
ing to this view, the x of the mathematicians would
be an abbreviation of the Arabic sa/=wxa7, an expres-
sion for the unknown quantity.

By the older cossistst these abbreviations are in-
troduced without any explanation; Stifel, however,

*Treutlein. G. Wertheim in Scklomilch's Zeitschrift, Bd. 44, HL. A.
1 Treutlein.



98 HISTORY OF MATHEMATICS.

considers it necessary to give his readers suitable ex-
planations. The word ¢‘root,” used for the first power
of an unknown quantity he explains by means of
the geometric progression, ‘‘because all successive
members of the series develop from the first as from
a root” ; he puts for x9 x1, x3, &3, x4, ... the signs 1,
1z, 13, 1¢, 133, . . . and calls these ¢‘ cossic numbers,”
which can be continued to infinity, while to each is
assigned a definite order-number, that is, an expo-
nent. In the German edition of Rudolff’s Coss, Stifel
at first writes the ¢‘cossic series” to the seventeenth
power in the manner already indicated, but also later
as follows:

o I 2
1. 18 1. 12I;IZI. 12[2;2[21. etc.
He also makés use of the letters 8 and € in writing
this expression. The nearest approach to our present
notation is to be found in Biirgi and Reymers, where
with the aid of ¢‘exponents” or ‘‘characteristics” the
polynomial 8x¢ 4 12x%—9x% 4 10x3 4 322 4 Tx—4 is
represented in the following manner:
vI v 1w 111 1 I o
84+12—94104+34+7—4
In Scheubel we find for x, a3, a3, x4, x5. .., gri.,
sec., ter., quar., quin., and in Ramus /, ¢, ¢, b¢, s as
abbreviations for Jatus, quadratus, cubus, biguadratus,
solidus.
The product (743 —3x + 2) (bx — 3) == 3628 — 362
-+ 19x — 6 is represented in its development by Gram-
mateus, Stifel, and Ramus in the following manner:
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GRAMMATEUS : STIFEL :
Tx. —3pri.+ 2N 73 —38x +2
by bpri—3N bx —3
35 ter.— 16x. 4 10 pri. 36— 15634 10x
—21x.4 9pri—6N —2134+ 9x—6
36 ter.— 36x. + 19 pri.— 6V 36¢c—363 4 19x—6
RAMUS :
79— 374 2
6/— 3
35— 1bg + 107
—21¢g4+ 9/—6

35, —36¢ + 19/—6.

As early as the fifteenth century the German Coss
made use of a special symbol to indicate the extrac-
tion of the root. At first .4 was used for V'4; this
period placed before the number was soon extended
by means of a stroke appended to it. Riese and
Rudolff write merely 1/4 for V4. Stifel takes the
first step towards a more general comprehension of
radical quantities in his Arithmetica integra, where the
second, third, fourth, fifth, roots of six are represented
by /36, /¢, 1/336, 1/ §6, while elsewhere the symbols

W’QC/\’o 4/, Iy, ly.

are used as radical signs. These symbols, of which
the first two occur in Rudolff and the other three in a
work of Stifel, indicate respectively the third, fourth,
second, third, and fourth roots of the numbers which
they precede.
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Rudolff gives a few rules for operations with rad-
ical quantities, but without demonstrations. Like
Fibonacci he calls an irrational number a numerus

surdus. Such expressions as the following are intro-
duced:

l/;i Vi= I/a + o+ l/m_,

V@it VEi=V a0,

_* _=z(VexVv’)

VaexVve — a—b
Stifel enters upon the subject of irrational numbers
with especial zeal and even refers to the speculations
of Euclid, but preserves in all his developments a
well-grounded independence. Stifel distinguishes two
classes of irrational numbers : principal and subordi-
nate (Haupt- und Nebenarten). In the first class are
included (1) simple irrational numbers of the form
V/a, (2) binomial irrationals with the positive sign, as

V3310 +1/336, 4+ 1/36, 1/312+/¢12,
(3) square roots of such binomial irrationals as
V31364 y8=Y1V6+V8;
V3-54+13=V5+V5,

(4) binomial irrationals with the negative sign, as

1/3310—/336, and (5) square roots of such binomial
irrationals, as

V33— 138=""16—VE

The subordinate class of irrational quantities, accord-
ing to Stifel, includes expressions like
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VR+ V38 +135 V32415tV
V33136 +2.—.1/3c.1/ B+ /3312
=Vveyr2 VI8 Lt12

Fibonacci evidently obtained his knowledge of
negative quantities from the Arabs, and like them he
does not admit negative quantities as the roots of an

equation. Pacioli enunciates the rule, minus times
minus gives always plus, but he makes use of it only
for the expansion of expressions of the form (p—g¢)
(r—s). Cardan proceeds in the same way; he recog-
nises'negative roots of an equation, but he calls them
aestimationes falsae or fictae,* and attaches to them no
independent significance. Stifel calls negative quan-
tities numeri absurdi. Harriot is the first to consider
negative quantities in themselves, allowing them to
form one side of an equation. Calculations involving
negative quantities consequently do not begin until
the seventeenth century. It is the same with irratio-
nal numbers; Stifel is the first to include them among
numbers proper. :

Imaginary quantities are scarcely mentioned. Car-
dan incidentally proves that

(6+1v—15) - (65— —15) =40.

Bombelli goes considerably farther. Although not
entering into the nature of imaginary quantities, of
which he calls + V' —1 piu di meno, and —v/ —1
meno di meno, he gives rules for the treatment of ex-

* Ars magna, 1545. Cap. 1., 6.
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pressions of the form a+4¥'—1, as they occur in
the solution of the cubic equation.

The Italian school early made considerable ad-
vancement in calculations involving powers. Nicole
Oresme* had long since instituted calculations with
fractional exponents. In his notation

3 p=0ph +24=0pt

it appears that he was familiar with the formule

= 111 1 1 1 [fe\ma

= @, S =g, F = ()
In the transformation of roots Cardan made the first
important advance by writing

VatVi=p+ve Va—Vi=p—vy

and therefore #a? —6=p*—g—=¢, a®—b=¢%. Bom-
bellit enlarged upon this observation and wrote

Vot vV—b=ptv=s Veov—i=p—v—,

from which follows #a% + 6=2%+¢. With reference
to the equation x®=15x + 4 he discovered that
s=Vo v _1214+V2_y_—121

=241V —142—V"1=4
For in this case '

P+e=5, (p+V=¢)'=2+4+v—I2,

(#—vV—=¢)'=2— V=13,

become through addition g8—3pg—=2, and with ¢=
b— 2%, 44 — 15p =2, and consequently (by trial) p—2
and ¢g=1.

* Hankel, p. 350. t Cantor, IL., p. 572.
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The extraction of square and cube roots accord-
ing to the Arab, or rather the Indian, method, was set
forth by Grammateus. In the process of extracting
the square root, for the purpose of dividing the num-
ber into periods, points are placed over the first, third,
fifth, etc., figures, counting from right to left. Stifel*
developed the extracting of roots to a considerable
extent; it is undoubtedly for this purpose that he
worked out a table of binomial coefficients as far as
(a4 )Y, in which, for example, the line for (a4 4)*
reads:

133 . 4 6 4 1.

The theory of series in this period made no ad-
vance upon the knowledge of the Arabs. Peurbach
found the sum of the arithmetic and the geometric
progressions. Stifel examined the series of natural
numbers, of even and of odd numbers and deduced
from them certain power series. In regard to these
series he was familiar, through Cardan, with the the-
orem that 1424234884, - 21=2*—1. With
Stifel geometric progressions appear in an application
which is not found in Euclid’s treatment of means.t
As is well known, » geometric means are inserted be-
tween the two quantities ¢ and 4 by means of the
equations

* Cantor, II., pp. 397, 409. t Treutlein.
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where y=”+f/§. Stifel inserts five geometric means
between the numbers 6 and 18 in the following man-

ner:

1 8 9 27 81 243 729

Vi3l /33 V39 /32T /3¢81 V3248 /36729
6 /3c130968 /<G48 /3108 4/c1944 4/5c11337408 18

in which the last line is obtained from the preceding
by multiplying by 6. Stifel makes use of this solution
for the purpose of duplicating the cube. He selects 6
for the edge of the given cube ; three geometric means
are to be inserted between 6 and 12, and as g="},
the edge of the required cube will be x=6%2=
V'¢c432. This length is constructed geometrically by
Stifel in the following manner:

L

l.:,
K AFE D

S

In the right angled triangle 4 CB, with the hypotenuse
BC, let AB=6, AC=12; make AD=DC, AE=
ED, AF=FE, Ff=J]E, J[K=]C=JL. Then 4K
is the first, 4L the second geometric mean between
6 and 12. This construction, which Stifel regards as
entirely correct, is only an approximation, since
AK=".5instead of 6 '2="17.56, AL =31/T0=9.487
instead of 64 =9.524.
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Simple facts involving the theory of numbers were
also known to Stifel, such as theorems relating to
perfect and diametral numbers and to magic squares.

A diametral number is the product of two numbers
the sum of whose squares is a rational square, the
square of the diameter, e. g., 6562 =252 4 603—=392
523, and hence 25.60—=1500 and 39.52=2028 are
diametral numbers of equal diameter.

11 24 (4 20 8

&4 5 13 21 9

10 18 1 14 22

28 6 19 2 15

Magic squares are figures resembling a chess
board, in which the terms of an arithmetic progres-
sion are so arranged that their sum, whether taken
diagonally or by rows or columns, is always the same.
A magic square containing an odd number of cells,
which is easier to construct than one containing an
even number, can be obtained in the following man-
ner: Place 1 in the cell beneath the central one, and
the other numbers, in their natural order, in the empty
cells in a diagonal direction. Upon coming to a cell
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already occupied, pass vertically downwards over two
cells.* Possibly magic squares were known to the Hin-
dus; but of this there is no certain evidence.t Manuel
Moschopulus] (probably in the fourteenth century)
touched upon the subject of magic squares. He gave
definite rules for the construction of these figures,
which long after found a wider diffusion through La-
hire and Mollweide. During the Middle Ages magic
squares formed a part of the wide-spread number-
mysticism. Stifel was the first to investigate them in
a scientific way, although Adam Riese had already in-
troduced the subject into Germany, but neither he nor
Riese was able to give a simple rule for their con-
struction. We may nevertheless assume that towards
the end of the sixteenth century such rules were known
to a few German mathematicians, § as for instance, to
the Rechenmeister of Nuremberg, Peter Roth. In the
year 1612 Bachet published in his Problemes plaisants ||
a general rule for squares containing an odd number
of cells, but acknowledged that he had not succeeded
in finding a solution for squares containing an even
number. Frénicle was the first to make a real ad-
vance beyond Bachet. He gaveArules (1693) for both
classes of squares, and even discovered squares that
maintain their characteristics after striking off th

#*Unger, p. 109.

1 Montucla, Histoire des Mathématigues, 1799-1802.

$ Cantor, 1., p. 480.

§ Giesing, Leben und Schriften Leonardo's da Pisa, 1886,

| This work is now accessible in a new edition published in 1884, Paris.
Gauthier-Villars.
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outer rows and columns. In 1816 Mollweide collected
the scattered rules into a book, De guadratis magicis,
which is distinguished by its simplicity and scientific
form. More modern works are due to Hugel (Ans-
bach, 1859), to Pessl (Amberg, 1872), who also con-
siders a magic cylinder, and to Thompson (Quarterly
Journal of Mathematics, Vol. X.), by whose rules the
magic square with the side gz is deduced from the
square with the side n.*

2. Algebra.

Towards the end of the Middle Ages the A7s major,
Arte maggiore, Algebra or the Coss is opposed to the
ordinary arithmetic (4rs minor). The Italians called
the theory of equations either simply 4/gedra, like the
Arabs, or Ars magna, Ars res et census (very common
after the time of Leonardo and fully settled in Regio-
montanus), La regola della cosa (cosa = res, thing),
Ars cossica or Regula cosae. The German algebraists
of the fifteenth and sixteenth centuries called it Coss,
Regula Coss, Algebra, or, like the Greeks, Logistic.
Vieta used the term Arithmetica speciosa, and Reymers
Arithmetica analytica, giving the section treating of
equations the special title von der Aequation. The
method of representing equations gradually took on
the modern form. Equality was generally, even by
the cossists, expressed by words ; it was not until the
middle of the seventeenth century that a special sym-

# Giinther, * Ueber magische Quadrate,” Grumer?'s Arck., Bd. 57.
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bol came into common use. The following are exam-
ples of the different methods of representing equa-
tions :*
Cardan:

Cubus p 6 rebus aequalis 20, 234+ 6x=20;
Vieta:

1C—8Q + 16/ aequ. 40, x® —8x34 16x=40;
Regiomontanus:

16 census et 2000 aequ. 680 rebus, 16x2 + 2000 —=
680x ;
Reymers:
XXVII XII x i mr 1 o
1¢r65532 +18 30 =18 412 —+8;
%28 —=65532x13 4 18210 — 30x% —18x3 4 12x—8;
Descartes:

%0 az— bb B =az—5?;

P—8P—1Ly+8*00, y—83—y148y=0;

x8 X ¥ %X X __px 00, x%—dx =0;

x0 * * X X _5 »0, x5—5 =0;
Hudde:

x80 gx.7, ad=gx+7r.

In Euler’s time the last transformation in the develop-
ment of the modern form had already been accom-
plished.

Equations of the first degree offer no occasion for
remark. We may nevertheless call attention to the
peculiar form of the proportion which is found in
Grammateus and Apian.t The former writes: ¢« Wie

* Matthiessen, Grundsiige der antiken und modernen Aigebra, 2 ed., 1896,
p. 270, etc.
t Gerhardt, Geschichte der Mathematik in Dewtschland, 1877,
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sich hadt @ zum 4, also hat sich ¢ zum 4,” and the
latter places

4 9
4—12—9—0 for ﬁ = ?.

Leonardo of Pisa solved equations of the second de-
gree in identically the same way as the Arabs.* Car-
dan recognized two roots of a quadratic equation, even
when one of them was negative; but he did not regard
such a root as forming an actual solution. Rudolff
recognized only positive roots, and Stifel stated ex-
plicitly that, with the exception of the case of quad-
ratic equations with two positive roots, no equation
can have more than one root. In general, the solu-
tion was affected in the manner laid down by Gram-
mateust in the example 12x 4 24 =219x?: ¢¢Proceed
thus: divide 24/ by 218 sec., which gives 10§a
(10§=a). Also divide 12 pri. by 218 sec., which
gives the result 546(5¢=4). Square the half of 4,
which gives 2401, to which add ¢=10§, giving 5828,
of which the square root is 7. Add this to } of 4, or
4§, and 7 is the number represented by 1 pri. Proof:
12 X TN=84N; add 24, =108N. 21§ sec. multi-
plied by 49 must also give 108 NV.”

This ¢ German Coss” was certainly cultivated by
Hans Bernecker in Leipzig and by Hans Conrad in
Eisleben] (about 1525), yet no memoranda by either
of these mathematicians have been found. The Uni-
versity of Vienna encouraged Grammateus to publish,

* Cantor, II., p. 31. t Gerhardt. $ Cantor, II., p. 387.
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in the year 1523, the first German treatise on Aigebra
under the title, ‘* Eyn new kunstlich bekend vnd gewiss
Rechenbiichlin | vff alle Kauffmannschafft. Nach Ge-
meynen Regeln de tre. Welschen practic. Regeln
falsi. Etlichen Regeln Cosse.. Buchhalten. . Visier
Ruthen zu machen.” Adam Riese, who had pub-
lished his Arithmetic in 1518, completed in 1524 the
manuscript of the Coss; but it remained in manu-
script and was not found until 1856 in Marienberg.
The Coss published by Christoff Rudolff in 1625 in
Strassburg met with universal favor. This work,
which is provided with many examples, all completely
solved, is described in the following words:

** Behend vnd Hiibsch Rechnung durch die kunstreichen re-
geln Algebre | so gemeinicklich die Coss genennt werden. Darinnen
alles so treulich an Tag geben | das auch allein ausz vleissigem
Lesen on allen miindtliche vnterricht mag begriffen werden. Hind-
angesetzt die meinung aller dere | so bisher vil vngegriindten regeln

angehangen. Einem jeden liebhaber diser kunst lustig vnd ergetz-.
lich Zusamen bracht durch Christoffen Rudolff von Jawer."#

The principal work of the German Coss is Michael
Stifel’s Arithmetica integra, published in Nuremberg in
15644. In this book, besides the more common opera-
tions of arithmetic, not only are irrational quantities
treated at length, but there are also to be found appli-

* A translation would read somewhat as follows: ‘‘Rapid and neat com-
putation by means of the ingenious rules of algebra, commonly designated
the Coss. Wherein are faithfully elucidated all things in such wise that they
may be comprehended from diligent reading alone, without any oral instruc-
tion whatsoever. In disregard of the opinions of all those who hitherto have
adhered to numerous unfounded rules. Happily and divertingly collected
for lovers of this art, by Christoff Rudolff, of Jauer.”
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cations of algebra to geometry. Stifel also published
in 16063 Dise Coss Christoffs Rudolffs mit schonen Ex-
empeln der Coss Gebessert vnd sehr gemehrt, with copi-
ous appendices of his own, giving compendia of the
Coss. With pardonable self-appreciation Stifel as-
serts, “It is my purpose in such matters (as far as I
am able) from complexity to produce simplicity.
Therefore from many rules of the Coss I have formed
a single rule and from the many methods for roots
have also established one uniform method for the in-
numerable cases.”

Stifel’s writings were laid under great contribu-
tion by later writers on mathematics in widely distant
lands, usually with no mention of his name. This
was done in the second half of the sixteenth century
by the Germans Christoph Clavius and Scheubel, by
the Frenchmen Ramus, Peletier, and Salignac, by
the Dutchman Menher, and by the Spaniard Nuiiez.
It can, therefore, be said that by the end of the six-
teenth century or the beginning of the seventeenth
the spirit of the German Coss dominated the Algebra
of all the European lands, with the single exception
of Italy.

The history of the purely arithmetical solution of
equations of the third and fourth degrees which was
successfully worked out upon Italian soil demands
marked attention. Fibonacci (Leonardo of Pisa)*
made the first advance in this direction in connection

#Cantor, II,, p. 43.
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with the equation %4 24? 4 10x=20. Although he
succeeded in solving this only approximately, it fur-
nished him with the opportunity of proving that the
value of x cannot be represented by square roots
alone, even when the latter are chosen in compound
form, like
VVm+Vn

The first complete solution of the equation x3+4{-mx=n
is due to Scipione del Ferro, but it is lost.* The
second discoverer is not Cardan, but Tartaglia. On
the twelfth of February, 1535, he gave the formula
for the solution of the equation a® -+ mx—=mn, which
has since become so famous under the name of his
rival. By 1541 Tartaglia was able to solve any equa-
tion whatsoever of the third degree. In 15639 Cardan
enticed his opponent Tartaglia to his house in Milan
and importuned him until the latter finally confided
his method under the pledge of secrecy. Cardan broke
his word, publishing Tartaglia’s solution in 1545 in
his 4rs magna, although not without some mention of
the name of the discoverer. Cardan also had the satis-
faction of giving to his contemporaries, in his 4rs
magna, the solution of the biquadratic equation which
his pupil Ferrari had succeeded in obtaining. Bom-
belli is to be credited with representing the roots of
the equation of the third degree in the sixhplest form,
in the so-called irreducible case, by means of a trans-
formation of the irrational quantities. Of the German

* Hankel, p. 360.
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mathematicians, Rudolff also solved a few equations
of the third degree, but without explaining the method
which he followed. Stifel by this time was able to
give a brief account of the ¢ cubicoss,’” that is, the
theory of equations of the third degree as given in
Cardan’s work. The first complete exposition of the
Tartaglian solution of equations of the third degree
comes from the pen of Faulhaber (1604).

The older cossists* had arranged equations of the
first, second, third, and fourth degrees (in so far as
they allow of a solution by means of square roots
alone) in a table containing twenty-four different
formis. The peculiar form of these rules, that is, of
the equations with their solutions, can be seen in the
following examples taken from Riese:

¢¢ The first rule is when the root [of the equation]
is equal to a number, or dragma so called. Divide
by the number of roots; the result of this division
must answer the question.” (I.e., if ax=24, then
s=2.)

a

¢The sixteenth rule is when squares equal cubes
and fourth powers. - Divide through by the number
of fourth powers [the coefficient of x*], then take half
the number of cubes and multiply this by-itself, add
this product to the number of squares, extract the
square root, and from the result take half the number
of cubes. Then you have the answer.”

*Treutlein.
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Taking this step by step we have,
axt 4 ba® —cx3, xt4 %x‘: i—x’, or

3
x4 4 ax® = Bx?, x=\/<%> —I—B—%

The twenty-four forms of the older cossists are re-
duced by Riese to ¢‘acht equationes” (eight equa-
tions, as his combination of German and Latin means),
but as to the fact that the square root is two-valued
he is not at all clear. Stifel was the first to let a single
equation stand for these eight, and he expressly as-
serts that a quadratic can have only two roots; this
he asserts, however, only for the equation &3 —agx—é.
In order to reduce the equations above mentioned to
one of Riese’s eight forms, Rudolff availed himself of
¢¢four precautions (Cautelen),” from which it is clearly
seen what labor it cost to develop the coss step by
step. For example, here is his

¢ First precaution. When in equating two num-
bers, in the one is found a quantity, and in the other
is found one of the same name, then (considering the
signs 4+ and —) must one of these quantities be added
to or subtracted from the other, one at a time, care
being had to make up for the defect in the equated
numbers by subtracting the 4 and adding the —.”
(1. e., from 5x? —3x 4 4=2x2 4 bx, we derive 327+
4=28x.)

The first examples of this period, of equations
with more than one unknown quantity, are met with
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in Rudolff,* who treats them ‘only incidentally. Here
also Stifel went decidedly beyond his predecessors.
Besides the first unknown, lx, he introduced 14, 15,
1C, . .. as secundae radices or additional unknowns
and indicated: the new notation made necessary in the
performance of the fundamental operations, as 8x4
(=8xy), 143(=)?), and several others.

Cardan, over whose name a shadow has been cast
by his selfishness in his intercourse with Tartaglia, is
still deserving of credit, particularly for his approxi-
mate solution of equations of higher degrees by means
of the regula falsi which he calls regula aurea. Vieta
went farther in this direction and evolved a method
of approximating the solution of algebraic equations
of any degree whatsoever, the method improved by
Newton and commonly ascribed to him. Reymers and
Biirgi also contributed to these methods of approxi-
mation, using the regula falsi. We can therefore say
that by the beginning of the seventeenth century there
were practical methods at hand for calculating the
positive real roots of algebraic equations to any de-
sired degree of exactness.

The real theory of algebraic equations is especially
due to Vieta. He understood (admitting only posi-
tive roots) the relation of the coefficients of equations
of the second and third degree to their roots, and also
made the surprising discovery that a certain equation
of the forty-fifth degree, which had arisen in trig-

*Cantor, II., p. 392.
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onometric work, possessed twenty-three roots (in this
enumeration he neglected the negative sine). In Ger-
man writings there are also found isolated statements
concerning the analytic theory of equations; for ex-
ample, Biirgi recognized the connection of a change
of sign with a root of the equation. However unim-
portant these first approaches to modern theories may
appear, they prepared the way for ideas which be-
came dominant in later times.

D. THIRD PERIOD.

FROM THE MIDDLE OF THE SEVENTEENTH CENTURY TO
THE PRESENT TIME.

The founding of academies and of royal societies
characterizes the opening of this period, and is the
external sign of an increasing activity in the field of
mathematical sciences. The oldest learned society,
the Accademia dei Lincei, was organized upon the
suggestion of a Roman gentleman, the Duke of Cesi,
as early as 1603, and numbered, among eother famous
members, Galileo. The Royal Society of London was
founded in 1660, the Paris Academy in 1666, and the
Academy of Berlin in 1700.*

With the progressive development of pure mathe-
matics the contrast between arithmetic, which has to
do with discrete quantities, and algebra, which relates
rather to continuous quantities, grew more and more

* Cantor, III., pp. 7, 29.



ALGEBRA. 117

marked. Investigations in algebra as well as in the
theory of numbers attained in the course of time great
proportions.

The mighty impulse which Vieta’s investigations
had given influenced particularly the works of Har-
riot. Building upon Vieta’s discoveries, he gave in
his Artis analyticae praxis, published posthumously in
the year 1631, a theory of equations, in which the sys-
tem of notation was also materially improved. The
signs > and < for ‘“greater than” and ¢‘less than”
originated with Harriot, and he always wrote x? for
xx and a® for xxx, etc. The sign X for ¢‘times”
is found almost simultaneously in both Harriot and
Oughtred, though due to the latter; Descartes used
a period to indicate multiplication, while Leibnitz in
1686 indicated multiplication by ~ and division by —,
although already in the writings of the Arabs the quo-
tient of 4 divided by 4 had appeared in the forms

a—2b, a/b, or -:—. The form a:4 is used for the first

time by Clairaut in a work which was published post-
humously in the year 1760. Wallis made use in 1656
of the sign o to indicate infinity. Descartes made ex-
tensive use of the the form a* (for positive integral ex-
ponents). Wallis explained the expressions #— and
x-'l' as indicating the same thing as 1:x” and /= re-
spectively ; but Leibnitz and Newton were the first to
recognize the great importance of, and to suggest, a
consistent system of notation. '
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The powers of a binomial engaged the attention
of Pascal in his correspondence with Fermat in 1654,*
which contains the ¢‘arithmetic triangle,” although,
in its essential nature at least, it had been suggested
by Stifel more than a hundred years before. This
arithmetic triangle is a table of binomial coefficients
arranged in the following form:

1 1 1 1 1 1
1 2 3 4 b

1 3 6 10 15 21
1 4 10 20 35 56
1 5 15 35 70 126
1 6 21 56 126 252

so that the nth diagonal, extending upwards from left
to right contains the coefficients of the expansion of
(a+ &)~ Pascal used this table for developing figurate
numbers and the combinations of a given number of
elements. Newton generalized the binomial formula
in 1669, Vandermonde gave an elementary proof in
1764, and Euler in 1770 in his Anleitung sur Algebra
gave a proof for any desired exponent.

A series of interesting investigations, for the most
part belonging to the second half of the nineteenth
century, relates to the nature of number and the ex-
tension of the number-concept. While among the an-
cients a ‘‘number” meant one of the series of natural

#Cantor, II., p. 684.
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numbers only, in the course of time the fundamental
operations of arithmetic have been extended from
whole to fractional, from positive to negative, from
rational and real to irrational and imaginary numbers.

For the addition of natural, or integral absolute,
numbers, which by Newton and Cauchy are often
termed merely ‘‘ numbers,” the associative and com-
mutative laws hold true, that is,

atb+c=a+(b+c), a4b+c=a+tctb.

Their multiplication obeys the associative, commuta-
tive, and distributive laws, so that

abc=(abd)c; ab=¢ta; (a+ b)c=ac+ be.

To these direct operations correspond, as inverses,
subtraction and division. The application of these
operations to all natural numbers necessitates the in-
troduction of the zero and of negative and fractional
numbers, thus forming the great domain of rational
numbers, within which these operations are always
valid, if we except the one case of division by zero.

This extension of the number-system showed itself
in the sixteenth century in the introduction of negative
quantities. Vieta distinguished affirmative (positive)
and negative quantities. But Descartes was the first
to venture, in his geometry, to use the same letter for
both positive and negative quantities.

The irrational had been incorporated by Euclid
into the mathematical system upon a geometric basis,
this plan being followed for many centuries. Indeed



120 HISTORY OF MATHEMATICS.

it was not until the most modern times* that a purely
arithmetic theory of irrational numbers was produced
through the researches of Weierstrass,- Dedekind, G.
Cantor, and Heine.

Weierstrass proceedst from the concept of the
whole number. A numerical quantity consists of a
series of objects of the same kind; a number is there-
fore nothing more than the ¢¢ combined representation
of one and one and one, etc.”]{ By means of subtrac-
tion and division we arrive at negative and fractional
numbers. Among the latter there are certain numbers
which, if referred to one particular system, for exam-
ple to our decimal system, consist of an infinite num-
ber of elements, but by transformation can be made
equal to others arising from the combination of a finite
number of elements (e. g., 0.1333...=y%). These
numbers are capable of still another interpretation.
But it can be proved that every number formed from
an infinite number of elements of a known species,
and which contains a known finite number of those
elements, possesses a very definite meaning, whether
it is capable of actual expression or not. When a
number of this kind can only be represented by the
infinite number of its elements, and in no other way,
it is an irrational number.

Dedekind§ arranges all positive and negative, in-

#Stolz, Vorlesungen iiber allgemeine Arithmetik, 1885-1886.

t Kossak, Die Elemente der Arithmetik, 1872,

3 Rsler, Die neueren Definitionsformen der irrationalen Zahlen, 1836.
§ Dedekind. Stctigheit und irrationale Zahlen, 1872,
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tegral and fractional numbers, according to their mag-
nitude, in a system or in a body of numbers (Zaklen
korper), R. A given number, @, divides this system
into the two classes, 41 and 43, each containing in-
finitely many numbers, so that every number in 4, is
less than every number in 43. Then @ is either the
greatest number in 4; or the least in 43. These ra-
tional numbers can be put into a one-to-one corre-
spondence with the points of a straight line. It is
then evident that this straight line contains an infinite
number of other points than those which correspond
to rational numbers, that is, the system of rational
numbers does not possess the same continuity as the
straight line, a continuity possible only by the intro-
duction of new numbers. According to Dedekind the
essence of continuity is contained in the following
axiom: ¢¢If all the points of a straight line are divided
into two classes such that every point of the first class
lies to the left of every point of the second, then there
exists one point and only one which effects this divi-
sion of all points into two classes, this separation of
the straight line into two parts.” With this assump-
tion it becomes possible to create irrational numbers.
A rational number, @, produces a Scknitt or section
(41)43), with respect to 4; and 43, with the charac-
teristic property that there is in A4; a greatest, or in
As a least number, a. To every one of the infinitely
many points of the straight line which are not covered
by rational numbers, or in which the straight line is
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not cut by a rational number, there corresponds one
and only one section (4)|4s), and each one of these
sections defines one and only one irrational number a.

In consequence of these distinctions *‘ the system X constitutes
an organized domain of all real numbers of one dimension; by this
no more is meant to be said than that the following laws govern : *

I. If a> B, and 8> 7, then a is also > y; that is, the number
B lies between the numbers a, y.

I1. If a, y are two distinct numbers, then there are infinitely
many distinct numbers  which lie between a and y.

III. If a is a definite number, then all numbers of the system
R fall into two classes, 4, and 4,, each of which contains infinitely
many distinct numbers; the first class 4, contains all numbers
a, which are <a; the second class 4, contains all numbers a,
which are > a; the number ¢ itself can be assigned indifferently
to either the first or the second class and it is then respectively
either the greatest number of the first class, or the least of the sec-
ond. In every case, the separation of the system X into the two
classes 4, and 4, is such that every number of the first class 4,
is less than every number of the second class 4,, and we affirm
that this separation is effected by the number a.

IV. If the system R of all real numbers is separated into two
classes, 4,, 4,, such that every number a,, of the class 4, is less
than every number @, of the class 4,, then there exists one and
only one number a by which this separation is effected (the domain
R possesses the property of continuity)."

According to the assertion of J. Tannery} the fundamental
ideas of Dedekind’s theory had already appeared in J. Bertrand's
text-books of arithmetic and algebra, a statement denied by Dede
kind.}

* Dedekind, Stetigkeit und irrationale Zahlen, 1872.
t Stolz, Vorlesungen iber allgemeine Arithmetik, 1885-1886.
t Dedekind, Was sind und was sollen die Zahlen? 1888.
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G. Cantor and Heine* introduce irrational num-
bers through the concept of a fundamental series.
Such a series consists of infinitely many rational num-
bers, ay, a3, a3, . . . . @,,, . . ., and it possesses the
property that for an assumed positive number ¢, how-
ever small, there is an index #, so that for #>m the
absolute value of the difference between the term a,
and any following term is smaller than e (condition of
the convergency of the series of the a’s). Any two
fundamental series can be compared with each other
to determine whether they are equal or which is the
greater or the less; they thus acquire the definiteness
of a number in the ordinary sense. A number defined
by a fundamental series is called a ¢¢series number.”
A series number is either identical with a rational
number, or not identical ; in the latter case it defines
an irrational number. The domain of series numbers
consists of the totality of all rational and irrational
numbers, that is to say, of all real numbers, and of
these only. In this case the domain of real numbers
can be associated with a straight line, as G. Cantor
has shown.

The extension of the number-domain by the addi-
tion of imaginary quantities is closely connected with
the solution of equations, especially those of the third
degree. The Italian algebraists of the sixteenth cen-
tury called them ‘‘impossible numbers.” As proper
solutions of an equation, imaginary quantities first

* Rbsler, Die neneren Definitionsformen der iryationalen Zahlen, 1886,
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appear in the writings of Albert Girard* (1629). The
expressions ‘‘real” and ‘‘imaginary” as characteristic
terms for the difference in nature of the roots of an
equation are due to Descartes.t De Moivre and Lam-
bert introduced imaginary quantities into trigonom-
etry, the former by means of his famous proposition
concerning the power (cos ¢+ #sin ¢)*, first given in
its present form by Euler.}

Gauss§ added to his great fame by explaining the
nature of imaginary quantities. He brought into gen-
eral use the sign ¢ for '—1 first suggested by Euler;||.
he calls a+ 4/ a complex number with the norm
a*+ 4. The term ‘“modulus” for the quantity Va3 + 4?
comes from Argand (1814), the term ¢reduced form”
for »(cos¢ -+ 7sin¢), which equals a4 47, is due to
Cauchy, and the name ¢“direction coefficient” for the
factor cos ¢ + #sin ¢ first appeared in print in an essay
of Hankel’s (1861), although it was in use somewhat
earlier. Gauss, to whom in 1799 it seemed simply
advisable to retain complex numbers,q by his expla-
nations in the advertisement to the second treatise on
biquadratic residues gained for them a triumphant
introduction into arithmetic operations.

The way for the geometric representation of com-
plex quantities was prepared by the observations of

*Cantor, II., p. 718. + Cantor, I1., p. 724. tCnhtor. IIL., p. 68;.

§ Hankel, Die komplexen Zahlen, 1867, p. 71.

| Beman. ‘‘Euler’s Use of ¢ to Represent an Imaginary,” Bwll. Amer.
Matk. Soc., March, 1898, p. 274.

§ Treutlein.
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various mathematicians of the seventeenth and eight-
eenth centuries, among them especially Wallis,* who
in solving geometric problems algebraically became
aware of the fact that when certain assumptions give
two real solutions to a problem as points of a straight
line, other assumptions give two ¢‘impossible” roots
as the points of a straight line perpendicular to the first
one. The first satisfactory representation of complex
quantities in a plane was devised by Caspar Wessel
in 1797, without attracting the attention it deserved.
A similar treatment, but wholly independent, was given
by Argand in 1806.f But his publication was not ap-
preciated even in France. In the year 1813 there ap-
peared in Gergonne’s Annales by an artillery officer
Francais in the city of Metz the outlines of a theory
of imaginary quantities the main ideas of which can
be traced back to Argand. Although Argand im-
proved his theory by his later work, yet it did not
gain recognition until Cauchy entered the lists as its
champion. It was, however, Gauss who (1831), by
means of his great reputation, made the representa-
tion of imaginary quantities in the ¢¢Gaussian plane”
the common property of all mathematicians.}
Gauss and Dirichlet introduced general complex
numbers into arithmetic. The primary investigations

* Hankel, Die komplexen Zaklen, 1867, p. 81.
t Hankel, Die komplexen Zaklen, 1867, p. 82.

$ For a résumé of the history of the geometric representation of the im-
aginary, see Beman, ‘A Chapter in the History of Mathematics,"’ Proc.
Amer, Assn. Adv. Science, 1897, pp. 33-50
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of Dirichlet in regard to complex numbers, which, to-
gether with indications of the proof, are contained in
the Berichte der Berliner Akademie for 1841, 1842, and
1846, received material amplifications through Eisen-
stein, Kummer, and Dedekind. Gauss, in the devel-
opment of the real theory of biquadratic residues,
introduced complex numbers of the form e+ 47, and
Lejeune Dirichlet introduced into the new theory of
complex numbers the notions of prime numbers,
congruences, residue-theorems, reciprocity, etc , the
propositions, however, showing greater complexity
and variety and offering greater difficulties in the way
of proof.* Instead of the equation #*—1=0, which
gives as roots the Gaussian units, 41, —1, 44, —9,
Eisenstein made use of the equation x*—1=0 and
considered the complex numbers a+4p (p being a
complex cube root of unity) the theory resembling that
of the Gaussian numbers @ 44, but yet possessing
certain marked differences. Kummer generalized the
theory still further, using the equation x"—1=0 as
the basis, so that numbers of the form
a=ayA1+ asAs+agAs+. . . .

arise where the a’s are real integers and the 4’s are
roots of the equation x*—1=0. Kummer also set
forth the concept of ideal numbers, that is, of such
numbers as are factors of prime numbers and possess
the property that there is always a power of these ideal
numbers which gives a real number. For example,

* Cayley, Address to the British Association, etc., 1883.
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there exists for the prime number p no rational factor-
ization so that p8 =4 B (where 4 is different from 2

"and p%); but in the theory of numbers formed from
the twenty-third roots of unity there are prime num-
bers g which satisfy the condition named above. In
this case p is the product of two ideal numbers, of
which the third powers are the real numbers 4 and
B, so that p=/A4-B. In the later development given
by Dedekind the units are the roots of any irreducible
equation with integral numerical coefficients. In the
case of the equation x? —x41=0, }(147V'3), that
is to say, the p of Eisenstein, is to be regarded as in-
tegral.

In tracing out the nature of complex numbers,
H. Grassmann, Hamilton, and Scheffler have arrived
at peculiar discoveries. Grassmann, who also mate-
rially developed the theory of determinants, investi-
gated in his treatise on directional calculus (4usdek-
nungslekre) the addition and multiplication of complex
numbers. In like manner, Hamilton originated the
calculus of quaternions, a method of calculation re-
garded with especial faver in England and America
and justified by its relatively simple applicability to
spherics, to the theory of curvature, and to mechanics.

The complete double title* of H. Grassmann's
chief work which appeared in the year 1844, as
translated, is: ‘The Science of Extensive Quantities
or Directional Calculus (Ausdeknungslehre). A New

*V. Schlegel, Grassmann, sein Leben und seine Werke.
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Mathematical Theory, Set Forth and Elucidated by
Applications. Part First, Containing the Theory of’
Lineal Directional Calculus. The Theory of Lineal
Directional Calculus, A New Branch of Mathematics,
Set Forth and Elucidated by Applications to the
Remaining Branches of Mathematics, as well as to
Statics, Mechanics, the Theory of Magnetism and
Crystallography.” The favorable criticisms of this
wonderful work by Gauss, who discovered that ‘‘the
tendencies of the book partly coincided with the paths
upon which he had himself been travelling for half a
century,” by Grunert, and by M&bius who recognised
in Grassmann ¢‘a congenial spirit with respect to
mathematics, though not to philosophy,” and who
congratulated Grassmann upon his ¢¢excellent work,”
were not able to secure for it a large circle of readers.
As late as 1853 Mobius stated that ¢ Bretschneider
was the only mathematician in Gotha who had assured
him that he had read the 4 u:dehnung?leltre through.”
Grassmann received the suggestion for his re-
searches from geometry, where 4, B, C, being points
of a straight line, 4B+ BC=AC.* With this he
combined the propositions which regard the parallelo
gram as the product of two adjacent sides, thus intro-
ducing new products for which the ordinary rules of
multiplication hold so long as there is no permutation
of factors, this latter case requiring the change of

*Gr Die Ausdehnungslehre von 1844 oder die lineale Awsdek-
nungslehre, eim nemer Zweig dev Mathematik. Zweite Auflage, 1878.
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signs. More exhaustive researches led Grassmann to
.regard as the sum of several points their center of
gravity, as the product of two points the finite line-
segment between them, as the product of three points
the area of their triangle, and as the product of four
points the volume of their pyramid. Through the
study of the Barycentrischer Calcéil of Mbius, Grass-
mann was led still further. The product of two line-
segments which form a parallelogram was called the
¢¢external product” (the factors can be permuted only
by a change of sign), the product of one line-segment
and the perpendicular projection of another upon it
formed the ¢‘internal product” (the factors can here
be permuted without change of sign). The introduc-
tion of the exponential quantity led to the enlarge-
ment of the system, of which Grassmann permitted a
brief survey to appear in Grunert's Archiv (1845).*
Hamilton} gave for the first time, in a communi-
cation to the Academy of Dublin in 1844, the values
i, j, &, so characteristic of his theory. The ZLectures
on Qualernions appeared in 18563, the Elements of Qua-
ternions in 1866. From a fixed point O let a line} be -
drawn to the point P having the rectangular co-ordi-
nates x, y, 5. Nowif , j, £ represent fixed coefficients
(unit distances on the axes), then

* Translated by Beman, Analys?, 1881, pp. 96, 114.

t Unverzagt, Theorie der gomiometrischem und lomgimetrischems Quater-
nionen, 1876.

$Cayley, A., **On Multiple Algebra,” in Quarterly jowrnal of Mathe-
matics, 1887.
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V=ix+j 9+ s
is a vector, and this additively joined to the ¢‘pure
quantity” or ¢¢scalar” w produces the quaternion
Q=w-+tix+jy+ As.
The addition of two quaternions follows from the
usual formula
Q+Q@=wt+w'+i(x+2)+/0+y)+4(:+7)
But in the case of multiplication we must place
B==k=—1, i=jk=—Fj, j=bi=—1ik,
k=i =—ji,
so that we obtain
Q Q =ww —xx' —yy —27'
+ i(wx' 4+ 2w’ + yi' — ')
+ /(@) + yw + 35 —x5)
+ & (w3’ + sw' + xy —yx').
On this same subject Scheffler published in 1846
his first work, Ueber die Verhilinisse der Arithmetik sur
Geomelrie, in 1852 the Situationscaleul, and in 1880 the
Polydimensionalen Grossen. For him* the vector 7 in
three dimensions is represented by
r—=a- 1PV op
r=x+yV—1435V—=1-vV'+1, or
r=x-+tyi+sis where i=V—1 and =11
are turning factors of an angle of 90° in the plane of xy
and xz. In Scheffler’s theory the distributive law does
not always hold true for multiplication, that is to say,
a(4+ ¢) is not always equivalent to e - ac.
Investigations as to the extent of the domain in

* Unverzagt, Ueber die Grundilagen der Rechnung mit Quatermionen, 1881.
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which with certain assumptions the laws of the ele-
mentary operations of arithmetic are valid have led
to the establishment of a calculus of logic.* To this
class of investigations there belong, besides Grass-
mann’s Formenlekre (1872), notes by Cayley and Ellis,
and in particular the works of Boole, Schrdder, and
Charles Peirce.

A minor portion of the modern theory of numbers
or higher arithmetic, which concerns the theories of
congruences and of forms, is made up of continued
fractions. The algorism leading to the formation of
such fractions, which is also used in calculating the
greatest common measure of two numbers, reaches
back to the time of Euclid. The combination of the
partial quotients in a continued fraction originated
with Cataldi, who in the year 1613 approximated the
value of square roots by this method, but failed to
examine closely the properties of the new fractions.

Daniel Schwenter was the first to make any ma-
terial contribution (1625) towards determining the
convergents of continued fractions. He devoted his
attention to the reduction of fractions involving large
numbers, and determined the rules now in use for cal-
culating the successive convergents. Huygens and
Wallis also labored in this field, the latter discover-
ing the general rule, together with a demonstration,
which combines the terms of the convergents

*Schr8der, Der Operationskreis des Logikcalcnls, 1877.
t Cantor, IL,, p. 695.
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The theory of continued fractions received its greatest
development in the eighteenth century with Euler,*
who introduced the name jfractio continua (the Ger-
man term Kettenbruck has been used only since the
beginning of the nineteenth century). He devoted
his attention chiefly to the reduction of continued
fractions to the form of infinite products and series,
and doubtless in this way was led to the attempt to
give the convergents independent form, that is to dis-
cover a general law by means of which it would be
possible to calculate any required convergent without
first obtaining the preceding ones. Although Euler
did not succeed in discovering such a law, he created
an algorism of some value. This, however, did not
bring him essentially nearer the goal because, in spite
of the example of Cramer, he neglected to make uce
of determinants and thus to identify himself the more
closely with the pure theory of combinations. From
this latter point of view the problem was attacked by
Hindenburg and his pupils Burckhardt and Rothe.
Still, those who proceed from the theory of combina-
tions alone know continued fractions only from one
side; the method of independent presentation allows

* Cantor, III., p. 670.
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the calculation of the desired convergent from both
sides, forward as well as backward, to the practical
value of which Dirichlet has testified.

Only in modern times has the calculus of determi-
nants been employed in this field, together with a
combinatory symbol, and the first impulse in this di-
rection dates from the Danish mathematician Ramus
(1855). Similar investigations were begun, however,
by Heine, M&bius, and S. Giinther, leading to the
formation of ¢‘‘continued fractional determinants.”
The irrationality of certain infinite continued frac-
tions* had been investigated before this by Legendre,
who, like Gauss, gave the quotient of two power se-
ries in the form of a continued fraction. By means of
the application of continued fractions it can be shown
that the quantities ¢* (for rational values of %), ¢, =,
and #? cannot be rational (Lambert, Legendre, Stern).
It was not until very recent times that the transcen-
dental nature of ¢ was established by Hermite, and
that of » by F. Lindemann.

In the theory of numbers strictly speaking, quite
difficult problems concerning the properties of num-
bers were solved by the first exponents of that study,
Euclid and Diophantus. Any considerable advance
was impossible, however, as long as investigations had
to be conducted 1 without an adequate numerical nota-
tion, and almost exclusively with the aid of an algebra

* Treutlein.
t Legendre, Thdorie des nombres, 1st ed. 1798, 3rd ed. 1830.
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just developing under the guise of geometry. Until
the time of Vieta and Bachet there is no essential ad-
vance to be noted in the theory of numbers. The
former solved many problems in this field, and the
latter gave in his work Prodlemes plaisants et délectables
a satisfactory treatment of indeterminate equations
of the first degree. Still later the first stones for the
foundation of a theory of numbers were laid by Fer-
mat, who had carefully studied Diophantus and into
whose works as elaborated by Bachet he incorporated
valuable additional propositions. The great mass of
propositions which can be traced back to him he gave
for the most part without demonstration, as for ex-
ample the following statement :

«“Every prime number of the form 4n+41 is the
sum of two squares; a prime number of the form
8141 has at the same time the three forms %4 22,
»*+ 253, y?—2s%; every prime number of the form
8n - 3 appears as y? 4 253, every one of the form 847
appears as 32—2s3.” Further, ‘‘Any number can be
formed by the addition of three cubes, of four squares,
of five fifth powers, etc.”

Fermat proved that the area of a Pythagorean
right-angled triangle, for example a triangle with the
sides 3, 4, and b, cannot be a square. He was also
the first to obtain the solution of the equation ax% -}
1=)3, where @ is not a square; at all events, he
brought this problem to the attention of English
mathematicians, among whom Lord Brouncker dis-
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covered a solution which found its way into the
works of Wallis. Many of Fermat’s theorems belong
to ¢the finest propositions of higher mathematics,”*
and possess the peculiarity that they can easily be
discovered by induction, but that their demonstrations
are extremely difficult and yield only to the most
searching investigation. It is just this which imparts
to higher arithmetic that magic charm which made it
a favorite with the early geometers, not to speak of
its inexhaustible treasure-house in which it far ex-
ceeds all other branches of pure mathematics.

After Fermat, Euler was the first again to attempt
any serious investigations in the theory of numbers.
To him we owe, among other things, the first scien-
tific solution of the chess board problem, which re-
quires that the knight, starting from a certain square,
shall in turn occupy all sixty-four squares, and the
further proposition that the sum of four squares mul-
tiplied into another similar sum also gives the sum of
four squares. He also discovered demonstrations of
various propositions of Fermat, as well as the general
solution of indeterminate equations of the second de-
gree with two unknowns on the hypothesis that a spe-
cial solution is known, and he treated a large number
of other indeterminate equations, for which he dis-
covered numerous ingenious solutions.

Euler (as well as Krafft) also occupied himself

*Gauss, Werke, 11, p. 152.
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with amicable numbers.* These numbers, which are
mentioned by Iamblichus as being known to the
Pythagoreans, and which are mentioned by the Arab
Tabit ibn Kurra, suggested to Descartes the discovery
of a law of formation, which is given again by Van
Schooten. Euler made additions to this law and de-
duced from it the proposition that two amicable num

bers must possess the same number of prime factors.
The formation of amicable numbers depends either
upon the solution of the equation xy + ax + by + ¢=0,
or upon the factoring of the quadratic form ax? 4 dxy
+ o

Following Euler, Lagrange was able to publish
many interesting results in the theory of numbers.
He showed that any number can be represented as
the sum of four or less squares, and that a real root
of an algebraic equation of any degree can be con-
verted into a continued fraction. He was also the
first to prove that the equation x3— 4y?=1 is always
soluble in integers, and he discovered a general method
for the derivation of propositions concerning prime
numbers.

Now the development of the theory of numbers
bounds forward in two mighty leaps to Legendre and
Gauss. The valuable treatise of the former, Essas sur
la théorie des nombres, which appeared but a few years
before Gauss’s Disquisitiones arithmeticae, contains an
epitome of all results that had been published up to

*Seelhoff, ‘ Befreundete Zahlen,” Hoppe Arck., Bd. 0.
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that time, besides certain original investigations, the
most brilliant being the law of quadratic reciprocity,
or, as Gauss called it, the Z%eorema fundamentale in
doctrina de residuis quadratis. This law gives a rela-
tionship between two odd and unequal prime numbers
and can be enunciated in the following words:

«Let (;—") be the remainder which is left after divid-

ing m”_ by #, and let (%) be the remainder left after

dividing n? by m. These remainders are always
+1 or —1. Whatever then the prime numbers m

and » may be, we always obtain (’—’;> = (';”) in case the
numbers are not both of the form 4x 4 3. But if both

are of the form 4x+4- 3, then we have (ﬁ) = (;-”).”

These two cases are contained in the formula
n 2.2l m
()= )

Bachet having exhausted the theory of the indetermi-
nate equation of the first degree with two unknowns,
an equation which in Gauss’s notation appears in the
form x=a (mod %), identical with % =y -+ a, mathe-
maticians began the study of the congruence x*=m
(mod 7). Fermat was aware of a few special cases of
the complete solution ; he knew under what conditions
+1, 2, + 3, b are quadratic residues or non-residues
of the odd prime number m.* For the cases —1 and

* Baumgart, ‘‘ Ueber das quadratische Reciprocititsgesete,”” in Schls-
milch' s Zeitschrift, Bd. 30, H1. Abt,
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+ 3 the demonstrations originate with Euler, for + 2
and + b with Lagrange. It was Euler, too, who gave
the propositions which embrace the law of quadratic
reciprocity in the most general terms, although he
did not offer a complete demonstration of it. The
famous demonstration of Legendre (in Essas sur /a
théorie des nombres, 1798) is also, as yet, incomplete.
In the year 1796 Gauss submitted, without knowing
of Euler’s work, the first unquestionable demonstra-
tion—a demonstration which possesses at the same
time the peculiarity that it embraces the principles
which were used later. In the course of time Gauss
adduced no less than eight proofs for this important
law, of which the sixth (chronologically the last) was
simplified almost simultaneously by Cauchy, Jacobi,
and Eisenstein. Eisenstein demonstrated in partic
ular that the quadratic, the cubic and the biquadratic
laws are all derived from a common source. In the
year 1861 Kummer worked out with the aid of the
theory of forms two demonstrations for the law of
quadratic reciprocity, which were capable of gene-
ralization for the nth-power residue. Up to 1890
twenty-five distinct demonstrations of the law of
quadratic reciprocity had been published; they make
use of induction and reduction, of the partition of the
perigon, of the theory of functions, and of the theory
of forms. In addition to the eight demonstrations by
Gauss which have already been mentioned, there are
four by Eisenstein, two by Kummer, and one each
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by Jacobi, Cauchy, Liouville, Lebesgue, Genocchi,
Stern, Zeller, Kronecker, Bouniakowsky, Schering,
Petersen, Voigt, Busche, and Pepin.

However much is due to the co-operation of math-
ematicians of different periods, yet to Gauss unques-
tionably belongs the merit of having contributed in
his Disquisitiones arithmeticac of 1801 the most impor-
tant part of the elementary development of the theory
of numbers. Later investigations in this branch have
their root in the soil which Gauss prepared. Of such
investigations, which were not pursued until after the
introduction of the theory of elliptic transcendents,
may be mentioned the propositions of Jacobi in regard
to the number of decompositions of a number into
two, four, six, and eight squares,* as well as the in-
vestigations of Dirichlet in regard to the equation

x4yt =1s" _
His work in the theory of numbers was Dirichlet’s
favorite pursuit.t He was the first to deliver lectures
on the theory of numbers in a German university and
was able to boast of having made the Dissquisitiones
arithmeticae of Gauss transparent and intelligible—a
task in which a Legendre, according to his own
avowal, was unsuccessful.
Dirichlet’s earliest treatise, Mémoire sur I’impossi-
biliteé de quelques équations sndéterminés du cinquieme
degré (submitted to the French Academy in 1825),

* Dirichlet, ** Ged#ichtnisrede auf Jacobi,’’ Crelle's Jowrnal, Bq. 52,
t Kummer, ‘ Gedichtnisrede auf Lej Dirichlet,’’ in Beri. Abk. 1860,

)
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deals with the proposition, stated by Fermat without
demonstration, that ¢‘the sum of two powers having
the same exponent can never be equal to a power of
the same exponent, when these powers are of a degree
higher than the second.” Euler and Legendre had
proved this proposition for the third and fourth pow-
ers; Dirichlet discusses the sum of two fifth powers
and proves that for integral numbers x5 4 y® cannot
be equal to as5. The importance of this work lies in
its intimate relationship to the theory of forms of
higher degree. Dirichlet’s further contributions in the
field of the theory of numbers contain elegant demon-
strations of certain propositions of Gauss in regard
to biquadratic residues and the law of reciprocity,
which were published in 1825 in the Géttingen Ge-
lehrte Ansesgen, as well as with the determination of
the class-number of the quadratic form for any given
determinant. His ‘‘applications of analysis to the
theory of numbers are as noteworthy in their way as
Descartes’s applications of analysis to geometry. They
would also, like the analytic geometry, be recognized
as a new mathematical discipline if they had been ex-
tended not to certain portions only of the theory of
number, but to all its problems uniformly.*

The numerous investigations into the properties
and laws of numbers had led in the seventeenth cen-
turyt to the study of numbers in regard to their divis-

*Kummer, “Ged#chtnisrede auf Lejeune-Dirichlet.” Berl, Abk. 1860.
+Seelhoff, ¢ Gescbic!:te der Faktorentafeln,’ in Hvppe Arck., Bd. 70.
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ors. 'For almost two thousand years Eratosthenes’s
¢“‘sieve” remained the only method of determining
prime numbers. In the year 1657 Franz van Schooten
published a table of prime numbers up to ten thou-
sand. Eleven years®ater Pell constructed a table of
the least prime factors (with the exception of 2 and 5)
of all numbers up to 100000. In Germany these
tables remained almost unknown, and in the year
1728 Poétius published independently a table of fac-
tors for numbers up to 100000, an example which
was repeatedly imitated. Kriiger's table of 1746 in-
cludes numbers up to 100 000; that of Lambert of
1770, which is the first to show the arrangement
used in more modern tables, includes numbers up to
102 000. Of the six tables which were prepared be-
tween the years 1770 and 1811 that of Felkel is inter-
esting because of its singular fate; its publication by
the Kaiserlich konigliches Aerarium in Vienna was
completed as far as 408 000; the remainder of the
manuscript was then withheld and the portion already
printed was used for manufacturing cartridges for the
last Turkish war of the eighteenth century. In the
year 1817 there appeared in Paris Burckhardt’s Zaé/le
des diviseurs pour tous les nombres du 17, 2°, 3* million.
Between 1840 and 1850 Crelle communicated to the
Berlin Academy tables of factors for the fourth, fifth,
and sixth million, which, however, were not pub-
lished. Dase, who is known for his arithmetic gen-
ius, was to make the calculations for the seventh to
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the tenth million, having been designated for that
work by Gauss, but he died in 1861 before its com-
pletion. Since 1877 the British Association has been
having these tables continued by Glaisher with the
assistance of two computers® The publication of
tables of factors for the fourth million was completed
in 1879.

In the year 18566 K. G. Reuschle published his
tables for use in the theory of numbers, having been
encouraged to undertake the work by his correspond-
ence with Jacobi. They contain the resolution of
numbers of the form 10*—1 into prime factors, up to
n=—242, and numerous similar results for numbers of
the form 4*—1, and a table of the resolution of prime
numbers p—=06#n+41 into the forms

=A%+ 38% and 4p=C?4 2T M3,
as they occur in the treatment of cubic residues and
in the partition of the perigon.

Of greatest importance for the advance of the sci-
ence of algebra as well as that of geometry was the .
development of the theories of symmetric functions,
of elimination, and of invariants of algebraic forms,
as they were perfected through the application of pro-
jective geometry to the theory of equations.*

The first formulas for calculating symmetric func-
tions (sums of powers) of the roots of an algebraic
equation in terms of its coefficients are due to Newton.

* A. Brill. Antrittsrede in Thbingen, 1884. Manuscript.
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Waring also worked in this field (1770) and developed
a theorem, which Gauss independently discovered
(1816), by means of which any symmetric function
may be expressed in terms of the elementary sym-
metric functions. This is accomplished directly by a
method devised by Cayley and Sylvester, through laws
due to the former in regard to the weight of sym
metric functions. The oldest tables of symmetric
functions (extending to the tenth degree) were pub-
lished by Meyer-Hirsch in his collection of problems
(1809). The calculation of these functions, which was
very tedious, was essentially simplified by Cayley and
Brioschi.

The resultant of two equations with one unknown,
or, what is the same, of two forms with two homo-
geneous variables, was given by Euler (1748) and by
Bézout (1764). To both belongs the merit of having
reduced the determination of the resultant to the so-
lution of a system of linear equations.* Bézout intro-
duced the name ¢‘resultant” (De Morgan suggested -
‘“‘eliminant”) and determined the degree of this func-
tion. Lagrange and Poisson also investigated ques-
tions of elimination; the former stated the condition
for common multiple-roots; the latter furnished a
method of forming symmetric functions of the com-
mon values of the roots of a system of equations. The
further advancement of the theory of elimination was
made by Jacobi, Hesse, Sylvester, Cayley, Cauchy,

*Salmon, Higher Algebra.
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Brioschi, and Gordan. Jacobi’s memoir,* which rep-
resented the resultant as a determinant, threw light
at the same time on the aggregate of coefficients be-
longing to the resultant and on the equations in which
the resultant and its product by another partially ar-
bitrary function are represented as functions of the
two given forms. This notion of Jacobi gave Hesse
the impulse to pursue numerous important investiga-
tions, especially on the resultant of two equations,
which he again developed in 1843 after Sylvester’s
dialytic method (1840); then in 1844, ¢‘on the elimi-
nation of the variables from three algebraic equations
with two variables”’; and shortly after ¢‘on the points
of inflexion of plane curves.” Hesse placed the main
value of these investigations, not in the form of the
final equation, but in the insight into the composition
of the same from known functions. Thus he came
upon the functional determinant of three quadratic
prime forms, and further upon the determinant of the
second partial differential coefficients of the cubic
form, and upon its Hessian determinant, whose geo-
metric interpretation furnished the interesting result
that in the general case the points of inflexion of a
plane curve of the nth order are given by its complete
intersection with a curve of order 3(#—2). This re-
sult was previously known for curves of the third
order, having been discovered by Pliicker. To Hesse
is further due the first important example of the re-

*0. H. Noether, Schlomilch's Zeitschrift, Bd. 20.
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moval of factors from resultants, in so far as these
factors are foreign to the real problem to be solved.
Hesse, always extending the theory of elimination,
in 1849 succeeded in producing, free from all super-
fluous factors, the long-sought equation of the 14th
degree upon which the double tangents of a curve of
the 4th order depend.

The method of elimination used by Hesse* in 1843
is the dialytic method published by Sylvester in 1840;
it gives the resultant of two functions of the mth and
nth orders as a determinant, in which the coefficients
of the first enter into 7 rows, and those of the second
into m rows. It was Sylvester also, who in 1861 in-
troduced the name ‘‘discriminant” for the function
which expresses the condition for the existence of
two equal roots of an algebraic equation; up to this
time, it was customary, after the example of Gauss,
to say ‘‘determinant of the function.”

The notion of invariance, so important for. all
branches of mathematics to-day, dates back in its
beginnings to Lagranget, who in 1773 remarked
that the discriminant of the quadratic form aex?4
26xy+ ¢y® remains unaltered by the substitution of
x4+ My for x. This unchangeability of the discrim-
inant by linear transformation, for binary and ternary
quadratic forms, was completely proved by Gauss
(1801); but that the discriminant in general and in
every case remains invariant by linear transformation,

* Matthiessen, p. 99. t Salmon, Higher Algebra.
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G. Boole (1841) recognized and first demonstrated.
In 1845, Cayley, adding to the treatment of Boole,
found that there are still other functions which possess
invariant properties in linear transformation, showed
how to determine such functions and named them
¢‘hyperdeterminants.” This discovery of Cayley de-
veloped rapidly into the important theory of invari-
ants, particularly through the writings of Cayley,
Aronhold, Boole, Sylvester, Hermite, and Brioschi,
and then through those of Clebsch, Gordan, and
others. After the appearance of Cayley’s first paper,
Aronhold made an important contribution by deter-
mining the invariants S and 7 of a ternary form, and
by developing their relation to the discriminant of
the same form. From 1851 on, there appeared a se-
ries of important articles by Cayley and Sylvester.
The latter created in these a large part of the termin-
ology of to-day, .especially the name ¢‘invariant”
(1851). In the year 18564, Hermite discovered his law
of reciprocity, which states that to every covariant or
invariant of degree p and order r of a form of the mth
order, corresponds also a covariant or invariant of
degree m and of order » of a form of the pth order.
Clebsch and Gordan used the abbreviation 4%, intro-
duced for binary forms by Aronhold, in their funda-
mental developments, e. g., in the systematic ex-
tension of the process of transvection in forming
invariants and covariants, already known to Cayley
in his preliminary investigations, in the folding-pro-
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cess of forming elementary covariants, and in the for-
mation of simultaneous invariants and covariants, in
particular the combinants. Gordan’s theorem on the
finiteness of the form-system constitutes the most im-
portant recent advance in this theory; this theorem
states that there is only a finite number of invariants
and covariants of a binary form or of a system of such
forms. Gordan has also given a method for the for-
mation of the complete form-system, and has carried
out the same for the case of binary forms of the fifth
and sixth orders. Hilbert (1890) showed the finite-
ness of the complete systems for forms of » variables.*

To refer in a word to the great significance of the theory of
invariants for other branches of mathematics, let it suffice to
mention that the theory of binary forms has been transferred by
Clebsch to that of ternary forms (in particular for equations in
line co-ordinates) ; that the form of the third order finds its repre-
sentation in a space-curve of the third order, while binary forms
of the fourth order play a great part in the theory of plane curves
of the third order, and assist in the solution of the equation of
the fourth degree as well as in the transformation of the elliptic
integral of the first class into Hermite's normal form ; finally that
combinants can be effectively introduced in the transformation of
equations of the fifth and sixth degrees. The results of investiga-
tions by Clebsch, Weierstrass, Klein, Bianchi, and Burckhardt,
have shown the great significance of the theory of invariants for
the theory of the hyperelliptic and Abelian functions. This theory
has been further used by Christoffel and Lipschitz in the represen-
tation of the line-element, by Sylvester, Halphen, and Lie in the
case of reciprocants or differential invariants in the theory of dif-

* Meyer, W. F., “Bericht iiber den gegenwiirtigen Stand der Invarianten-
theorie.” _Jahkresbericht der dewtschem Mathematiker-Vereinigung, Bd. 1.
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ferential equations, and by Beltrami in his differential parameter
in the theory of curvature of surfaces. Irrational invariants also
have been proposed in various articles by Hilbert.

The theory of probabilities assumed form under
the hands of Pascal and Fermat.* In the year 1654,
a gambler, the Chevalier de Méré, had addressed two
inquiries to Pascal as follows: ¢ In how many throws
with dice can one hope to throw a double six,” and
“In what ratio should the stakes be divided if the
game is broken up at a given moment?” These two
questions, whose solution was for Pascal very easy,
were the occasion of his laying the foundation of a
new science which was named by him ¢ Géométrie du
hasard.” At Pascal’s invitation, Fermat also turned
his attention to such questions, using the theory of
combinations. Huygens soon followed the example
of the two French mathematicians, and wrote in 1656}
a small treatise on games of chance. The first to
apply the new theory to economic sciences was the
¢¢grand pensioner” Jean de Witt, the celebrated pupil
of Descartes. He made a report in 1671 on the man-
ner of determining the rate of annuities on the basis
of a table of mortality. Hudde also published in-
vestigations on the same subject. ¢¢Calculation of
chances’ (Rechnung tdiber den Zufall) received compre-
hensive treatment at the hand of Jacob Bernoulli in
his Ars conjectandi (1713), printed eight years after the
death of the author, a book which remained forgotten

* Cantor, II., p. 688. 1 Cantor, II., p. 692.
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until Condorcet called attention to it. Since Ber-
noulli, there has scarcely been a distinguished alge-
braist who has not found time for some work in the
theory of probabilities.

To the method of least squares Legendre gave the
name in a paper on this subject which appeared in
1805.* The first publication by Gauss on the same
subject appeared in 1809, although he was in posses-
sion of the method as early as 1795. The honor is
therefore due to Gauss for the reason that he first set
forth the method in its present form and turned it to
practical account on a large scale. The apparent in-
spiration for this investigation was the discovery of
the first planetoid Ceres on the first of January, 1801,
by Piazzi. Gauss calculated by new methods the
orbit of this heavenly body so accux:ately that the
same planetoid could be again found towards the end
of the year 1801 near the position given by him. The
investigations connected with this calculation ap-
peared in 1809 as Theoria motus corporum coelestium,
etc. The work contained the determination of the
position of a heavenly body for any given time by
means of the known orbit, besides the solution of the
difficult problem to find the orbit from three observa-
tions. In order to make the orbit thus determined
agree as closely as possible with that of a greater
number of observations, Gauss applied the process

#*Merriman, M., ‘List of Writings relating to the Method of Least
Squares.’”’ 7Trans. Conn. Acad., Vol. 1V.
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discovered by him in 1795. The object of this was
¢“‘s0 to combine observations which serve the purpose
of determining unknown quantities, that the unavoid-
able errors of observation affect as little as possible
the values of the numbers sought.” For this purpose
Gauss gave the following rule*: ¢‘Attribute to each
error a moment depending upon its value, multiply
the moment of each possible error by its probability
and add the products. The error whose moment is
equal to this sum will have to be designated as the
mean.” As the simplest arbitrary function of the
error which shall be the moment of the latter, Gauss
chose the square. Laplace published in the year 1812
a detailed proof of the correctness of Gauss’s method.

Elementary presentations of the theory of combi-
nations are found in the sixteenth century, e. g., by
Cardan, but the first great work is due to Pascal. In
this he uses his arithmetic triangle, in order to de-
termine the number of combinations of 7 elements of
the nth class. Leibnitz and Jacob Bernoulli produced
much new material by their investigations. Towards
the end of the eighteenth century, the field was cul-
tivated by a number of German scholars, and there
arose under the leadership of Hindenburg the ¢‘com-
binatory school,”} whose followers added to the de-
velopment of the binomial theorem. Superior to them
all in systematic proof is Hindenburg, who separated

#Gerhardt, Geschichte der Mathematik in Deutschland, 1877.
+Gerhardt, Geschichte der Mathematik im Deutschland, 1877.
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polynomials into a first class of the form a+4 4+ ¢+
d+4 ... and into a second, a -} bx+cax¥ - dxP .. ..
He perfected what was already known, and gave the
lacking proofs to a number of theorems, thus earning
the title of ¢founder of the theory of combinatory
analysis.”

The combinatory school, which included Eschenbach, Rothe,
and especially Pfaff, in addition to its distinguished founder, pro-
duced a varied literature, and commanded respect because of its
elegant formal results. But, in its aims, it stood so far outside the
domain of the new and fruitful theories cultivated especially by
such French mathematicians as Lagrange and Laplace, that it re-
mained without influence in the further development of mathemat-
ics, at least at the beginning of the nineteenth century.

In the domain of infinite series,* many cases which
reduce for the most part to geometric series, were
treated by Euclid, and to a greater degree by Apol-
lonius. The Middle Ages added nothing essential,
and it remained for more recent generations to make
important contributions to this branch of mathemat-
ical knowledge. Saint-Vincent and Mercator devel-
oped independently the series for log (1 4 x), Gregory
those for tan—lx, sinx, cosx, secx, cosecx. In the
writings of the latter are also found, in the treatment
of infinite series, the expressions ¢ convergent” and
«“divergent.” Leibnitz was led to infinite series,
through consideration of finite arithmetic series. He
realized at the same time the necessity of examining

* Reiff, R., Geschichte der unendlichen Reihen, Tiibingen, 1889.
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more closely into the convergence and divergence of
series. This necessity was also felt by Newton, who
used infinite series in a manner similar to that of
Apollonius in the solution of algebraic and geometric
problems, especially in the determination of areas,
and consequently as equivalent to integration.

The new ideas introduced by Leibnitz were further
developed by Jacob and John Bernoulli. The former
found the sums of series with constant terms, the lat-
ter gave a general rule for the development of a func-
tion into an infinite series. At this time there were
no exact criteria for convergence, except those sug-
gested by Leibnitz for alternating series.

During the years immediately following, essential
advances in the formal treatment of infinite series
were made. De Moivre wrote on recurrent series and
exhausted almost completely their essential proper-
ties. Taylor's and Maclaurin’s closely related series
appeared, Maclaurin developing a rigorous proof of
Taylor’s theorem, giving numerous applications of it,
and stating new formulas of summation. Euler dis-
played the greatest skill in the handling of infinite
series, but troubled himself little about convergence
and divergence. He deduced the exponential from
the binomial series, and was the first to develop ra-
tional functions into series of sines and cosines of
integral multiple arguments.* In this manner he
defined the coefficients of a trigonometric series by

* Reiff, Geschichte der unendlichen Reihen, 1889, pp. 105, 127.
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definite integrals without applying these important
formulas to the development of arbitrary functions
into trigonometric series. This was first accomplished
by Fourier (1822), whose investigations were com-
pleted by Riemann and Cauchy. The investigation
was brought to a temporary termination by Dirichlet
(1829), in so far as by rigid methods he gave it a sci-
entific foundation and introduced general and com-
plex investigations on the convergence of series.*
From Laplace date the developments into series of
two variables, especially into recurrent series. Le-
gendre furnished a valuable extension of the theory
of series by the introduction of spherical functions.

With Gauss begin more exact methods of treat-
ment in this as in nearly all branches of mathematics,
the establishment of the simplest criteria of conver-
gence, the investigation of the remainder, and the
continuation of series beyond the region of conver-
gence. The introduction to this was the celebrated
series of Gauss:

B e@t+DBB+1) ,
1+ Ty Ty *t Toag+n ot
which Euler had already handled but whose great
value he had not appreciated.t The generally ac-
cepted naming of this series as ‘“hypergeometric” is
due to J. F. Pfaff, who proposed it for ‘the general
series in which the quotient of any term divided by the

*Kummer, ‘‘ Geddchtnissrede auf Lejeune-Dirichlet.”” Berlimer Abkand-
lungen, 1860.
t Re:ff, Geschichte dey umendlichen Reihen, 1889, p. 161.
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preceding is a function of the index. Euler, follow-
ing Wallis, used the same name for the series in which
that quotient is an integral linear function of the
index.* Gauss, probably influenced by astronomical
applications, stated that his series, by assuming cer-
tain special values of a, B, y, could take the place
of nearly all the series then known; he also investi-
gated the essential properties of the function repre-
sented by this series and gave for series in general an
important criterion of convergence. We are indebted
to Abel (1826) for important investigations on the con-
tinuity of series.

The idea of uniform convergence arose from the
study of the behavior of series in the neighborhood of
their discontinuities, and was expressed almost simul-
taneously by Stokes and Seidel (1847-1848). The
latter calls a series uniformly convergent when it rep-
resents a discontinuous function of a quantity x, the
separate terms of which are continuous, but in the
vicinity of the discontinuities is of such a nature that
values of x exist for which the series converges as
slowly as desired.t

On account of the lack of immediate appreciation
of Gauss’s memoir of 1812, the period of the discovery
of effective criteria of convergence and divergence |
may be said to begin with Cauchy (1821). His meth-

*Riemann, Werke, p. 78.
t Reiff, Geschichte der unendlichen Reiken, 1889, p. 207.

$ Pringsheim, “‘Allgemeine Theorie der Divergenz und Konvergenz von
Reihen mit positiven Gliedern,’ Math. Annalen, XXXV,
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ods of investigation, as well as the theorems on in-
finite series with positive terms published between
1832 and 1851 by Raabe, Duhamel, De Morgan, Ber-
trand, Bonnet, and Paucker, set forth special criteria,
for they compare generally the #th term with particu-’
lar functions of the form a*, #*, n(log »)* and others.
Criteria of essentially more general nature were first
discovered by Kummer (1835), and were generalized
by Dini (1867). Dini’s researches remained for a
time, at least in Germany, completely unknown. Six
years later Paul du Bois-Reymond, starting with the
same fundamental ideas as Dini, discovered anew the
chief results of the Italian mathematician, worked
"them out more thoroughly and enlarged them essen-
tially to a system of convergence and divergence cri-
teria of the first and second kind, according as the
general term of the series ¢, or the quotient a,,,:4, is
the basis of investigation. Du Bois-Reymond’s re-
sults were completed and in part verified somewhat
later by A. Pringsheim.

After the solution of the algebraic equations of the
third and fourth degrees was accomplished, work on
the structure of the system of algebraic equations in
general could be undertaken. Tartaglia, Cardan, and
Ferrari laid the keystone of the bridge which led from
the solution of equations of the second degree to the
complete solution of equations of the third and fourth
degrees. But centuries elapsed before an Abel threw
a flood of light upon the solution of higher equations.
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Vieta had found a means of solving equations allied
to evolution, and this was further developed by Harriot
and Oughtred, but without making the process less
tiresome.* Harriot’s name is connected with another
theorem which contains the law of formation of the
coefficients of an algebraic equation from its roots,
although the theorem was first stated in full by Des-
cartes (1683) and proved general by Gauss.

Since there was lacking a sure method of deter-
mining the roots of equations of higher degree, the
attempt was made to include these roots within as
narrow limits as possible. De Beaune and Van
Schooten tried to do this, but the first usable methods
date from Maclaurin (4/gebra, published posthum-
ously in 1748) and Newton (1722) who fixed the real
roots of an algebraic equation between given limits.
In order to effect the general solution of an algebraic
equation, the effort was made ejther to represent the
given equation as the product of several equations of
lower degree, a method further developed by Hudde,
or to reduce, through extraction of the square root,
an equation of even degree to one whose degree is
half that of the given equation ; this method was used
by Newton, but he accomplished little in this direc-
tion.

Leibnitz had exerted himself as strenuously as
Newton to make advances in the theory of algebraic
equations. In one of his letters he states that he has

® Montucla, Histoire des Mathématiques, 1799-1802.



ALGEBRA. 157

been engaged for a long time in attempting to find
the irrational roots of an equation of any degree, by
eliminating the intermediate terms and reducing it to
the form x"=4, and that he was persuaded that in
this manner the complete solution of the general equa-
tion of the nth degree could be effected. This method
of transformation of the general equation dates back
to Tschirnhausen and is found as ¢“Nova methodus
etc.” in the Lespziger Acta eruditorum of the year 1683.
In the equation
x*+ Ax" 14 Ba" 34 ... 4+ Mx+ N=0
Tschirnhausen places
y=a+Bxr+yx+4... +px"t;

the elimination of x from these two equations gives
likewise an equation of the nth degree in y, in which
the undetermined coefficients a, 8, y, . . . can so be
taken as to give the equation in y certain special char-
acteristics, for example, to make some of the terms
vanish. From the values of y, the values of x are de-
termined. By this method the solution of equations
of the 3rd and 4th degrees is made to depend respec-
tively upon those of the 2nd and 3rd degrees; but the
application of this method to the equation of the 6th
degree, leads to one of the 24th degree, upon whose
solution the complete solution of the equation of the
5th degree depends. .

Afterwards, also, toward the end of the seventeenth
and the beginning of the eighteenth century, De Lagny,
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Rolle, Laloub2re, and Leseur made futile attempts to
advance with rigorous proofs beyond the equation of
the fourth degree. Euler* took the problem in hand
in 1749. He attempted first to resolve by means of

“undetermined coefficients the equation of degree 22
into two equations each of degree s, but the results
obtained by him were not more satisfactory than those
of his predecessors, in that an eguation of the eighth
degree by this treatment led to an equation of the 70th
degree. These investigations were not valueless, how-
ever, since through them Euler discovered the proof
of the theorem that every rational integral algebraic
function of even degree can be resolved into real fac-
tors of the second degree.

In a work of the date 1762 Euler attacked the so-
lution of the equation of the nth degree directly. Judg-
ing from equations of the 2nd and 3rd degrees, he sur-
mised that a root of the general equation of the nth
degree might be composed of (z—1) radicals of the
nth degree with subordinate square roots. He formed
expressions of this sort and sought through compari-
son of coefficients to accomplish his purpose. This
method presented no difficulty up to the fourth de-
gree, but in the case of the fifth degree Euler was
compelled to limit himself to particular cases. For
example, he obtained from '

20 —40x3 —72x% 4 50x 4 98 =0
the following value:

*Cantor, 111, p. 582.
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e=V_"3113v/—7 +V 3131/ —7

+ ¥V 1810V =14V 18—101/—7.

Analogous to this attempt of Euler is that of Walr-
ing (1779). In order to solve the equation f(x)=0
of degree 7, he places

x=aVp+oV P+ VP +.. .+l

After clearing of radicals, he gets an equation of the
nth degree, F(x)=0, and by equating coefficients
finds the necessary equations for determining g, 4, ¢,
. .. g and p, but is unable to complete the solution.
Bézout also proposed a method. He eliminated y
from the equations y*—1=0, ay* 14534 ...
+ 2=0, and obtained an equation of the nth degree,
f(x)=0, and then equated coefficients. Bézout was
no more able to solve the general equation of the bth
degree than Waring, but the problem gave him the
impulse to perfect methods of elimination.
Tschirnhausen had begun, with his transforma-
tion, to study the roots of the general equation as func-
tions of the coefficients. The same result can be
reached by another method not different in principle,
namely the formation of resolvents. In this way,
Lagrange, Malfatti and Vandermonde independently
reached results which were published in the year 1771.
Lagrange’s work, rich in matter, gave an analysis of
all the then known methods of solving equations, and
explained the difficulties which present themselves in
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passing beyond the fourth degree. Besides this he
gave methods for determining the limits of the roots
and the number of imaginary roots, as well as meth-
ods of approximation.

Thus all expedients for solving the general equa-
tion, made prior to the beginning of the.nineteenth
century yielded poor results, and especially with ref-
erence to Lagrange’s work Montucla* says ¢‘all this
is well calculated to cool the ardor of those who are
inclined to tread this new way. Must one entirely
despair of the solution of this problem?”

Since the general problem proved insoluble, at-
tempts were made with special cases, and many ele-
gant results were obtained in this way. De Moivre
brought the solution of the equation

—1) (n?—
o G0

for odd integral values of n, into the form

”!
+ =

y=§l~/a+’l/;’r-ﬁ—} V—a—Vm.

Euler investigated symmetric equations and Bézout
deduced the relation between the coefficients of an
equation of the nth degree which must exist in order
that the same may be transformed into y*+a=0.

Gauss made an especially significant step in ad-
vance in the solution of the cyclotomic equation x*—1
=0, where 7 is a prime number. Equations of this
sort are closely related to the division of the circum-

* Histoire des Sciences Mathématigues, 1799-1802.



ALGEBRA. 161

ference into # equal parts. If y is the side of an in-
scribed n-gon in a circle of radius 1, and s the diago-
nal connecting the first and third vertices, then

y=2 sin I-, g=2sin 2_'.
n n
If however
. 27 | .. 2x 2 .. 2x\"
:r:_..cos-’7 +zsm7, (cos;-}-xsm?) =1,

then the equation #*—1=0 is to be considered as the
algebraic expression of the problem of the construc-
tion of the regular n-gon.

The following very general theorem was proved
by Gauss.* ¢If zis a prime number, and if #—1 be
resolved into prime factors a, 4, ¢, . . . so that n—1=
a* By, . ., then it is always possible to make the so-
lution of #”—1=0 depend upon that of several equa-
tions of lower degree, namely upon a equations of
degree a, B equations of degree 5, etc.” Thus for
example, the solution of x®—1=0 (the division of
the circumference into 73 equal parts) can be effected,
since 7—1="72=3%.23, by solving three quadratic
and two cubic equations. Similarly x17—1=0 leads
to four equations of the second degree, since n—1=
16 =2%; therefore the regular 17-gon can be con-
structed by elementary geometry, a fact which before
the time of Gauss no one had anticipated.

Detailed constructions of the regular 17-gon by
elementary geometry were first given by Pauker and

s Legendre, Théorie des Nombres.



162 HISTORY OF MATHEMATICS.

Erchinger.* A noteworthy construction of the same
figure is due to von Staudt..

For the case that the prime number n has the form 2™ 4-1,
the solution of the equation x*—1==0 depends upon the solution
of m quadratic equations of which only m —1 are necessary in the
construction of the regular z-gon. It should be observed that for
m =24 (k a positive integer), the number 2™ 41 may be prime,
but, as R. Baltzert has pointed out, is not necessarily prime# If
m is given successively the values

1,9, 84,5678, 16, 312,38,
n=3"4-1 will take the respective values
8, 5, 9, 17, 83, 65, 120, 257, 65537, 92'* 41, 22** 41,
of which only 8, 5, 17, 257, 85587 are prime. The remaining num-
bers are composite ; in particular, the last two values of # have
respectively the factors 114689 and 167772 161. The circle there-
fore can be divided into 257 or 65537 equal parts by solving re-
spectively 7 or 13 quadratic equations, which is possible by ele-
mentary geometric construction.
' From the equalities
255=28 —1=(2'—1)(2*+1)= 15-17, 256 =28,

65585 =210 —1 = (2% —1) (2% 4 1) =255 - 257, 65536 =2'6,
it is easily seen that, by elementary geometry, that is, by use of
only straight edge and compasses, the circle can be divided respec-
tively into 255, 256, 257 ; 65535, 65536, 65537 equal parts. The
process cannot be continued without a break, since » =2%4-1 is
not prime.

The possibility of an elementary geometric construction of the
regular 85535-gon is evident from the following :

65585 =255 - 257 =15 - 17 - 257.
If the circumference of the circle is 1, then since

* Gauss, Werke, 11., p. 187.
t Netto, Substitutionentheorie, 1882 ; English by Cole, 1892, p. 187.
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fx—vr=1fs shs— 37 =uslsm _
it follows that gg}yx of the circumference can be obtained by ele-
mentary geometric operations.

After Gauss had given in his earliest scientific
work, his doctor’s dissertation, the first of his proofs
of the important theorem that every algebraic equa-
tion has a real or an imaginary root, he made in his
great memoir of 1801 on the theory of numbers, the
conjecture that it might be impossible to solve gen-
eral equations of degree higher than the fourth by
radicals. Ruffini and Abel gave a rigid proof of this
fact, and it is due to these investigations that the
fruitless efforts to reach the solution of the general
equation by the algebraic method were brought to an
end. In their stead the question formulated by Abel
came to the front, ¢“What are the equations of given
degree which admit of algebraic solution?”’

The cyclotomic equations of Gauss form such a
group. But Abel made an important generalization
by the theorem that an irreducible equation is always
soluble by radicals when of two roots one can be ra-
tionally expressed in terms of the other, provided at
the same time the degree of the equation is prime; if
this is not the case, the solution depends upon the
solution of equations of lower degree.

A further great group of algebraically soluble equa-
tions is therefore comprised in the Abelian equations.
But the question as to the necessary and sufficient
conditions for the algebraic solubility of an equation
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was first answered by the youthful Galois, the crown
of whose investigations is the theorem, ¢“If the degree
of an irreducible equation is a prime number, the
equation is soluble by radicals alone, provided the
roots of this equation can be expressed rationally in
terms of any two of them.”

Abel's investigations fall between the years 1824
and 1829, those of Galois in the years 1830 and 1831.
Their fundamental significance for all further labors
in this direction is an undisputed fact; the question
concerning the general type of algebraically soluble
equations alone awaits an answer.

Galois, who also earned special honors in the field
of modular equations which enter into the theory of
elliptic functions, introduced the idea of a group of
substitutions.* The importance of this innovation,
" and its development into a formal theory of substitu-
tions, as Cauchy has first given it in the Exercices
d’analyse, etc., when he speaks of ¢‘systems of con-
jugate substitutions,” became manifest through geo-
metric considerations. The first example of this was
furnished by Hesset in his investigation on the nine
points of inflexion of a curve of the third degree. The
equation of the ninth degree upon which they depend
belongs to the class of algebraically soluble equations.
In this equation there exists between any two of the
roots and a third determined by them an algebraic re-

* Netto, Swbstitutionentheorie, 1882. English by Cole, 1892.
4 Noether, O. H., Scklomilch's Zeitschrift, Band 20.
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lation expressing the geometric fact that the nine
points of inflexion lie by threes on twelve straight
lines. To the development of the substitution theory
in later times, Kronecker, Klein, Noether, Hermite,
Betti, Serret, Poincaré, Jordan, Capelli, and Sylow
especially have contributed.

Most of the algebraists of recent times have par-
ticipated in the attempt to solve the equation of the
fifth degree. Before the impossibility of the algebraic
solution was known, Jacobi at the age of 16 had made
an attempt in this direction; but an essential advance
is to be noted from the time when the solution of the
equation of the fifth degree was linked with the theory
of elliptic functions.* By the help of transformations
as given on the one hand by Tschirnhausen and on
the other by E. S. Bring (1786), the roots of the equa-
tion of the fifth degree can be made to depend upon
a single quantity only, and therefore the equation, as
shown by Hermite, can be put into the form #—7/—4
=0. By Riemann’s methods, the dependence of the
roots of the equation upon the parameter 4 is illus-
trated ; on the other hand, it is possible by power-
series to calculate these five roots to any degree of ap-
proximation. In 18568, Hermite and Kronecker solved
the equation of the fifth degree by elliptic functions,
but without reference to the algebraic theory of this
equation, while Klein gave the simplest possible solu-

*Klein, F., Vergleichende Betracktungcn iiber meuere geometrische For-
schungen, 1872.
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tion by transcendental functions by using the theory
of the icosahedron.

The solution of general equations of the nth degree for 5> 4
by transcendental functions has therefore become possible, and
the operations entering into the solution are the following: Solu-
tion of equations of lower degree; solution of linear differential
equations with known singular points; determination of constants
of integration, by calculating the moduli of periodicity of hyper-
elliptic integrals for which the branch-points of the function to be
integrated are known ; finally the calculation of theta-functions of
several variables for special values of the argument.

The methods leading to the complete solution of
an algebraic equation are in many cases tedious; on
this account the methods of approximation of real
roots are very important, especially where they can
be applied to transcendental equations. The most
general method of approximation is due to Newton
(communicated to Barrow in 1669), but was also
reached by Halley and Raphson in another way.*
For the solution of equations of the third and fourth
degrees, John Bernoulli worked out a valuable method
of approximation in his Zectiones calculi integralis.
Further methods of approximation are due to Daniel
Bernoulli, Taylor, Thomas Simpson, Lagrange, Le-
gendre, Horner, and others.

By graphic and mechanical means also, the roots of an equa-
tion can be approximated. C. V. Boyst made use of a machine

for this purpose, which consisted of a system of levers and ful-
crums; Cunynghamet used a cubic parabola with a tangent scale

*Montucla. t Nature, XXXIIL., p. 166.
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on a straight edge; C. Reuschle* used an hyperbola with an ac-
companying gelatine-sheet, so that the roots could be read as in-
tersections of an hyperbola with a parabola. Similar methods,
suited especially to equations of the third and fourth degrees are
due to Bartl, R. Hoppe, and Oekinghaust; Lalanne and Mehmke
also deserve mention in this connection.

For the solution of equations, there had been in-
vented in the seventeenth century an algorism which
since then has gained a place in all branches of mathe-
matics, the algorism of determinants.} The first sug-
gestion of computation with those regularly formed
aggregates, which are now called determinants (after
Cauchy), was given by Leibnitz in the year 1693.
He used the aggregate

A11, @12y - - « « « Q1
as31, 422, « - . . . O3y

in forming the resultant of » linear equations with
n—1 unknowns, and that of two algebraic equations
with one unknown. Cramer (1750) is considered as
a second inventor, because he began to develop a sys-
tem of computation with determinants. Further the-
orems are due to Bézout (1764), Vandermonde (1771),
Laplace (1772), and Lagrange (1773). Gauss’s D s-
quisitiones arithmeticae (1801) formed an essential ad-

* Bbklen, O., Math. Mittheilungen, 1886, p. 108.
t Fortschritte, 1883; 1884.

t Muir, T., Theory of Determinants in the Historical Order of its thlo)-
ment, Part I, 1890; Baltzer. R., TAeorie und A: dungen der Determis
1881,
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vance, and this gave Cauchy the impulse to many
new investigations, especially the development of the
general law (1812) of the multiplication of two deter-
minants.

Jacobi by his ¢“masterful skill in technique,” also
rendered conspicuous service in the theory of determi-
nants, having developed a theory of expressions which
he designated as ¢‘functional determinants.” The
analogy of these determinants with differential quo-
tients led him to the general ¢ principle of the last
multiplier” which plays a part in nearly all problems
of integration.* Hesse considered in an especially
thorough manner symmetric determinants whose ele-
ments are linear functions of the co-ordinates of a
geometric figure. He observed their behavior by lin-
ear transformation of the variables, and their rela-
tions to such determinants as are formed from them
by a single bordering.t Later discussions are due to
Cayley on skew determinants, and to Nachreiner and
S. Giinther on relations between determinants and
continued fractions.

The appearance of the differential calculus forms
one of the most magnificent discoveries of this period.
The preparatory ideas for this discovery appear in
manifest outline in Cavalieri,{ who in a work Met/o-
dus indivisibilium (1635) considers a space-element as

* Dirichlet, ‘ Ged4chtnissrede auf Jacobi.” Crelle's Jourmal, Band s2.
4 Noether, O. H., Scalomilch's Zeitschrift, Band 20,
{ Liiroth, Rektoratsrede, Freiburg, 1889; Cantor, IL., p. 759.
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the sum of an infinite number of simplest space-ele-
ments of the next lower dimension, e. g., a solid as
the sum of an infinite number of planes. The danger
of this conception was fully appreciated by the inven-
tor of the method, but it was improved first by Pascal
who considers a surface as composed of an infinite
number of infinitely small rectangles, then by Fermat
and Roberval ; in all these methods, however, there
appeared the drawback that the sum of the resulting
series could seldom be determined. Kepler remarked
that a function can vary only slightly in the vicinity
of a greatest or least value. Fermat, led by this
thought, made an attempt to determine the maximum
or minimum of a function. Roberval investigated the
problem of drawing a tangent to a curve, and solved
it by generating the curved line by the composition of
two motions, and applied the parallelogram of veloci-
ties to the construction of the tangents. Barrow,
Newton’s teacher, used this preparatory work with
reference to Cartesian co-ordinate geometry. He
chose the rectangle as the velocity-parallelogram, and
at the same time introduced like Fermat infinitely
small quantities as increments of the dependent and
independent variables, with special symbols. He gave
also the rule, that, without affecting the validity of the
result of computation, higher powers of infinitely small
quantities may be neglected in comparison with the
first power. But Barrow was not able to handle frac-
tions and radicals involving infinitely small quantities,
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and was compelled to resort to transformations to re-
move them. Like his predecessors, he was able to
determine in the simpler cases the value of the quo-
tient of two, or the sum of an infinite number of in-
finitesimals. The general solution of such questions
was reached by Leibnitz and Newton, the founders of
the differential calculus.

Leibnitz gave for the calculus of infinitesimals, the
notion of which had been already introduced, further
examples and also rules for more complicated cases.
By summation according to the old methods,* he de-
duced the simplest theorems of the integral calculus,
which he, by prefixing a long S as the sign of summa-
tion wrote,

fx=%’, fx’:i;, f(x+y)= x+fy.

From the fact that the sign of summation J' raised
the dimension, he drew the conclusion that by differ-
ence-forming the dimension must be diminished so
that, therefore, as he wrote in a manuscript of Oct.

29, 1675, from J' /=ya, follows immediately l=};.

Leibnitz tested the power of his new method by
geometric problems; he sought, for example, to de-
termine the curve ‘‘for which the intercepts on the
axis to the feet of the normals vary as the ordinates.”
In this he let the abscissas x increase in arithmetic
ratio and designated the constant difference of the

*Gerhardt, Gesckichte der Math ik in Deutschland, 1877 ; Cantor, I11.,
P» 160. .
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abscissas first by > and later b dx, without explain-
Yz y

ing in detail the meaning of this new symbol. In
1676 Leibnitz had developed his new calculus so far
as to be able to solve geometric problems which could
not be reduced by other methods. Not before 1686,
however, did he publish anything about his method,
its great importance being then immediately recog-
nized by Jacob Bernoulli.

What Leibnitz failed to explain in the develop-
ment of his methods, namely what is understood by
his infinitely small quantities, was clearly expressed
by Newton, and secured for him a theoretical superi-
ority. Of a quotient of two infinitely small quantities
Newton speaks as of a limiting value* which the ratio
of the vanishing quantities approaches, the smaller
they become. Similar considerations hold for the sum
of an infinite number of such quantities. For the de-
-termination of limiting values, Newton devised an
especial algorism, the calculus of fluxions, which is
essentially identical with Leibnitz’s differential calcu-
lus. Newton considered the change in the variable
as a flowing ; he sought to determine the velocity of
the variation of the function when the variable changes
with a given velocity. The velocities were called
fluxions and were designated by %, y, % (instead of
dx, dy, ds, as in Leibnitz’s writings). The quantities
themselves were called fluents, and ‘the calculus of
fluxions determines therefore the velocities of given

* Liiroth, ReAtoratsrede, Freiburg, 1889.
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motions, or seeks conversely to find the motions when
the law of their velocities is known. Newton’s paper
on this subject was finished in 1671 under the name
of Methodus fluxionum, but was first published in 1736,
after his death. Newton is thought by some to have
borrowed the idea of fluxions from a work of Napier.*

According to Gauss, Newton deserved much more
credit than Leibnitz, although he attributes to the
latter great talent, which, however, was too much dis-
sipated. It appears that this judgment, looked at
from both sides, is hardly warranted. Leibnitz failed
to give satisfactory explanation of that which led
Newton to one of his most important innovations, the
idea of limits. On the other hand, Newton is not
always entirely clear in the purely analytic proo’.
Leibnitz, too, deserves very high praise for the intro-
duction of the appropriate symbols J' and dx, as well
as for stating the rules of operating with them. To-
day the opinion might safely be expressed that the
differential and integral calculus was independently
discovered by Newton and by Leibnitz; that Newton
is without doubt the first inventor; that Leibnitz, on
the other hand, stimulated by the results communi-
cated to him by Newton, but without the knowledge
of Newton's methods, invented independently the
calculus; and that finally to Leibnitz belongs the
priority of publication.”

*Cohen, Das Prinsip der Infinitesimalmethode und seine Geschickte, 1889 :
Cantor, IIL., p. 163.
+Liroth. A very good summary of the discussion is also given in Ball's
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The systematic development of the new calculus
made necessary a clearer understanding of the idea of
the infinite. Investigations on the infinitely great are -
of course of only passing interest for the explanation
of natural phenomena,* but it is entirely different
with the question of the infinitely small. The infini-
tesimalt appears in the writings of Kepler as well as
in those of Cavalieri and Wallis under varying forms,
essentially as ¢‘infinitely small null-value,” that is, as
a quantity which is smaller than any given quantity,
and which forms the limit of a given finite quantity.
Euler's indivisibilia lead systematically in the same
direction. Fermat, Roberval, Pascal, and especially
Leibnitz and Newton operated with the ‘‘unlimitedly
small,” yet in such a way that frequently an abbrevi-
ated method of expression concealed or at least ob-
scured the true sense of the development. In the
writings of John Bernoulli, De 'Hospital, and Pois-
son, the infinitesimal appears as a quantity difterent
from zero, but which must become less than an assign-
able value, i. e., as a “ pseudo-infinitesimal ”’ quantity.
By the formation of derivatives, which in the main
are identical with Newton’s fluxions, Lagrange] at-
tempted entirely to avoid the infinitesimal, but his
attempts only served the purpose of bringing into
Short History of Mathematics, London, 1888, The best summary is that given
in Cantor, Vol. III.

# Riemann, Werke, p. 267.

1 R. Hoppe, Differentialvechnung, 186s.
t Liiroth, Rektoratsrede, Freiburg, 1889.
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prominence the urgent need for a deeper foundation
for the theory of the infinitesimal for which Tacquet
and Pascal in the seventeenth century, and Maclaurin
and Carnot in the eighteenth had made preparation.
We are indebted to Cauchy for this contribution. In
his investigations there is clearly established the mean-
ing of propositions which contain the expression ¢‘in-
finitesimal,” and a safe foundation for the differential
calculus is thereby laid.

The integral calculus was first further extended
by Cotes, who showed how to integrate rational alge-
braic functions. Legendre applied himself to the in-
tegration of series, Gauss to the approximate deter-
mination of integrals, and Jacobi to the reduction and
evaluation of multiple integrals. Dirichlet is espe-
cially to be credited with generalizations on definite
integrals, his lectures showing his great fondness for
this theory.* He it was who welded the scattered
results of his predecessors into a connected whole,
and enriched them by a new and original method of
integration. The introduction of a discontinuous fac-
tor allowed him to replace the given limits of integra-
tion by different ones, often by infinite limits, without
changing the value of the integral. In the more re-
cent investigations the integral has become the means
of defining functions or of generating others.

In the realm of differential equationst the works

* Kummer, ‘‘ Ged#ichtnissrede auf Lejeune-Dirichlet.’”” Beriiner Abk., 1860
t Cantor, II1., p. 429; Schlesinger, L., Handbduck der Theorie dev lincaren
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worthy of mention date back to Jacob and John Ber-
noulli and to Riccati. Riccati’s merit consists mainly
in having introduced Newton’s philosophy into Italy.
He also integrated for special cases the differential
equation named in his honor—an equation completely
solved by Daniel Bernoulli—and discussed the ques-
tion of the possibility of lowering the order of a given
differential equation. The theory first received a de-
tailed scientific treatment at the hands of Lagrange,
especially as far as concerns partial differential equa-
tions, of which D’Alembert and Euler had handled
the equation u = ﬂ

an dx?
differential equation and on the reduction of the solu-

Laplace also wrote on this

tion of linear differential equations to definite integ-
rals.

On German soil, J. F. Pfaff, the friend of Gauss
and next to him the most eminent mathematician
of that time, presented certain elegant investigations
(1814, 1815) on differential equations,* which led
Jacobi to introduce the name ¢¢Pfaffian problem.”
Pfaff found in an original way the general integration
of partial differential equations of the first degree for
any number of variable quantities. Beginning with
the theory of ordinary differential equations of the
first degree with 7 variables, for which integrations
Differentialgleichungen, Bd. 1., 1895,—an excellent historical review; Mansion,

P., Theorie der partiellew Differentialgleichungen erster Ordnung, deutsch
von Maser, Leipzig, 1892, also excellent on history.

*A. Brill, “Das mathematisch-physikalische Seminar in Ttibingen."
Aus der Festschrift dey Umiversitit sum Konigs- Jubilium, 1889.
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were given by Monge (1809) in special simple cases,
Pfaff gave their general integratioh and considered
the integration of partial differential equations as a
particular case of the general integration. In this the
general integration of differential equations of every
degree between two variables is assumed as known.*
Jacobi (1827, 1836) also advanced the theory of differ-
ential equations of the first order. The treatment
was so to determine unknown functions that an integ-
ral which contains these functions and the differential
coefficient in a prescribed way reaches a maximum or
minimum. The condition therefor is the vanishing of
the first variation of the integral, which again finds its
expression in differential equations, from which the
unknown functions are determined. In order to be
able to distinguish whether a real maximum or mini-
mum appears, it is necessary to bring the second va-
riation into a form suitable for investigating its sign.
This leads to new differential equations which La-
grange was not able to solve, but of which Jacobi was
able to show that their integration can be deduced
from the integration of differential equations belong-
ing to the first variation. Jacobi also investigated
the special case of a simple integral with one unknown
function, his statements being completely proved by
Hesse. Clebsch undertook the general investigation
of the second variation, and he was successful in
showing for the case of multiple integrals that new

*Gauss, Werke, 111., p. 232.
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integrals are not necessary for the reduction of the
second variation. Clebsch (1861, 1862), following the
suggestions of Jacobi, also reached the solution of the
Pfaffian problem by making it depend upon a system
of simultaneous linear partial differential equations,
the statement of which is possible without integration.
Of other investigations, one of the most important is
the theory of the equation

3 3

Tt T =0

which Dirichlet encountered in his work on the po-
tential, but which had been known since Laplace
(1789). Recent investigations on differential equa-
tions, especially on the linear by Fuchs, Klein, and
Poincaré, stand in close connection with the theories
of functions and groups, as well as with those of equa-
tions and series. )

*“Within a half century the theory of ordinary differential
equations has come to be one of the most important branches of
analysis, the theory of partial differential equations remaining as
one still to be perfected. The difficulties of the general problem
of integration are so manifest that all classes of investigators have
confined themselves to the properties of the integrals in the neigh-
borhood of certain given points. The new departure took its
greatest inspiration from two memoirs by Fuchs (1866, 1868), a
work elaborated by Thomé and Frobenius. . . .

**Since 1870 Lie's labors have put the entire theory of differ-
ential equations on a more satisfactory foundation. He has shown
that the integration theories of the older mathematicians, which
had been looked upon as isolated, can by the introduction of the
concept of continuous groups of transformations be referred to a
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common source, and that ordinary differential equations which
admit the same infinitesimal transformations present like difficul-
ties of integration He has also emphasized the subject of trans-
formations of contact (Ber#hrungs-Transformationen) which
underlies so much of the recent theory. . . . Recent writers have
shown the same tendency noticeable in the works of Monge and
Cauchy, the tendency to separate into two schools, the one inclin-
ing to use the geometric diagram and represented by Schwarz,
Klein, and Goursat, the other adhering to pure analysis, of which
Weierstrass, Fuchs, and Frobenius are types."#

A short time after the discovery of the differential
and integral calculus, namely in the year 1696, John
Bernoulli proposed this problem to the mathemati-
cians of his time: To find the curve described by a
body falling from a given point 4 to another given
point B in the shortest time.} The problem came from
a case in optics, and requires a function to be found
whose integral is a minimum. Huygens had devel-
oped the wave-theory of light, and John Bernoulli
had found under definite assumptions the differential
equation of the path of the ray of light. Of such mo-
tion he sought another example, and came upon the
cycloid as the brachistochrone, that is, upon the above
statement of the problem, for which up to Easter
1697, solutions from the Marquis de I’'Hospital, from
Tschirnhausen, Newton, Jacob Bernoulli and Leib-
nitz were received. Only the two latter treated the

#Smith, D. E., “History of Modern Mathematics,” in Merriman and
Woodward’s Higher Mathematics, New York, 1896, with authorities cited.

t Reiff, R., **Die Anfdnge der Variationsrechnung,” Matk. Mittheilungen
von Biklen, 1887. Cantor, 111, p. 225. Woodhouse, 4 7reatise on Isoperimet-
rical Problems (Cambridge, 1810). The last named work is rare.
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problem as one of maxima and minima. Jacob Ber-
noulli’s method remained the common one for the
treatment of similar cases up to the time of Lagrange,
and he is therefore to be regarded as one of the found-
ers of the calculus of variations. At that time* all
problems which demanded the statement of a maxi-
mum or minimum property of functions were called
isoperimetric problems. To the oldest problems of
this kind belong especially those in which one curve
with a maximum or minimum property was to be found
from a class of curves of equal perimeters. That the
circle, of all isoperimetric figures, gives the maximum
area, is said to have been known to Pythagoras. In
the writings of Pappus a series of propositions on fig-
ures of equal perimeters are found. Also in the four-
teenth century the Italian mathematicians had worked
on problems of this kind. But ‘‘the calculus of varia-
tions may be said to begin with. .. John Bernoulli
(1696). It immediately occupied the attention of
Jacob Bernoulli and the Marquis de I'Hospital, but
Euler first elaborated the subject.”t He] investigated
the isoperimetric problem first in the analytic-geo-
metric manner of Jacob Bernoulli, but after he had
worked on_the subject eight years, he came in 1744
upon a new and general solution by a purely analytic
method (in his celebrated work: Methodus inveniends

® Anton, Geschickte des isoperimetrischem Problems, 1888,
t Smith, D. E., History of Modern Mathematics, p. 533.
$ Cantor, III., pp. 243, 819, 830.
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lineas curvas, etc.); this solution shows how those or-
dinates of the function which are to assume a greatest
or least value can be derived from the variation of the
curve-ordinate. Lagrange (ZEssai d’une nouvelle mé.
thode, etc., 1760 and 1761) made the last essential step
from the pointwise variation of Euler and his prede-
cessors to the simultaneous variation of all ordinates
of the required curve by the assumption of variable
limits of the integral. His methods, which contained
the new feature of introducing 8 for the change of the
function, were later taken up in Euler's /ntegral Cal-
culus. Since then the calculus of variations has been
of valuable service in the solution of problems in the-
ory of curvature. _

The beginnings of a real theory of functions¥*, espe-
cially that of the elliptic and Abelian functions lead
back to Fagnano, Maclaurin, D'Alembert,and Landen.
Integrals of irrational algebraic functions were treated,
especially those involving square roots of polynomials
of the third and fourth degrees; but none of these
works hinted at containing the beginnings of a science
dominating the whole subject of algebra. The matter
assumed more definite form under the hands of Euler,
Lagrange, and Legendre. For a long time the only
transcendental functions known were the circular func-

# Brill, A., and Noether, M., * Die Entwickelung der Theorie der alge-
braischen Functionen in #lterer und neuerer Zeit, Bericht erstattet der Deut-
schen Mathematiker-Vereinigung, Jakresberickt, Bd. 11., pp. 107-566, Berlin,
1894 ; Kbnigsberger, L., Zu» Geschichte der Theorie der elliptischen Tramscen-
denten in den Jahrem 1826-182¢9, Leipzig, 1879.
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tions (sin %, cos, . . .), the common logarithm, and,
especially for analytic purposes, the hyperbolic log-
arithm with base ¢, and (contained in this) the ex-
ponential function ¢*. But with the opening of the
nineteenth century mathematicians began on the one
hand thoroughly to study special transcendental func-
tions, as was done by Legendre, Jacobi, and Abel,
and on the other hand to develop the general theory
of functions of a complex variable, in which field
Gauss, Cauchy, Dirichlet, Riemann, Liouville, Fuchs,
and Weierstrass obtained valuable results.

The first signs of an interest in elliptic functions*
are connected with the determination of the arc of the
lemniscate, as this was carried out in the middle of
the eighteenth century. In this Fagnano made the
discovery that between the limits of two integrals ex-
pressing the arc of the curve, one of which has twice
the value of the other, there exists an algebraic rela-
tion of simple nature. By this means, the arc of the
lemniscate, though a transcendent of higher order,
can be doubled or bisected by geometric construc-
tion like an arc of a circle.t Euler gave the ex-
planation of this remarkable phenomenon. He pro-
duced a more general integral than Fagnano (the
so-called elliptic integral of the first class) and showed
that two such integrals can be combined into a third
of the same kind, so that between the limits of these

¢ Enneper, A., Elliptische Functionen, Theorie und Geschickte, Halle, 18go.
+ Dirichlet, ** Ged#chtnissrede auf Jacobi.” Crelle's Journal, Bd. 5a.
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integrals there exists a simple algebraic relation, just
as the sine of the sum of two arcs can be composed of
the same functions of the separate arcs (addition-the-
orem). The elliptic integral, however, depends not
merely upon the limits but upon another quantity be-
longing to the function, the modulus. While Euler
placed only integrals with the same modulus in rela-
tion, Landen and Lagrange considered those with
different moduli, and showed that it is possible by
simple algebraic substitution to change one elliptic
integral into another of the same class. The estab-
lishment of the addition-theorem will always remain
at least as important a service of Euler as his trans-
formation of the theory of circular functions by the
introduction of imaginary exponential quantities.

The origin* of the real theory of elliptic functions
and the theta-functions falls between 1811 and 1829.
To Legendre are due two systematic works, the Exer-
cices de calcul intégral (1811-1816) and the Thdorie des
Jonctions elliptiques (1825-1828), neither of which was
known to Jacobi and Abel. Jacobi published in 1829
the Fundamenta nova theoriace functionum ellipticarum,
certain of the results of which had been simultane-
ously discovered by Abel. Legendre had recognised
that a new branch of analysis was involved in those
investigations, and he devoted decades of earnest
work to its development. Beginning with the integral
which depends upon a square root of an expression of

*Cayley, Address to the British Association. etc., 1883.
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the fourth degree in x, Legendre noticed that such
integrals can be reduced to canonical forms. Ay=
V1 "Z3sin?y was substituted for the radical, and
three essentially different classes of elliptic integrals
were distinguished and represented by F(y), E®Y),
II(y). These classes depend upon the amplitude y
and the modulus 4, the last class also upon a para-
meter .

In spite of the elegant investigations of Legendre
on elliptic integrals, their theory still presented sev-
eral enigmatic phenomena. It was noticed that the
degree of the equation conditioning the division of
the elliptic integral is not equal to the number of the
parts, as in the division of the circle, but to its square.
The solution of this and similar problems was re-
served for Jacobi and Abel. Of the many productive
ideas of these two eminent mathematicians there are
especially two which belong to both and have greatly
advanced the theory.

In the first place, Abel and Jacobi independently of
each other observed that it is not expedient to inves-
tigate the elliptic integral of the first class as a func-
tion of its limits, but that the method of consideration
must be reversed, and the limit introduced as a func-
tion of two quantities dependent upon it. Expressed
in other words, Abel and Jacobi introduced the direct
functions instead of the inverse. Abel called them
¢, /» F, and Jacobi named them sin am, cos am, A am,
or, as they are written by Gudermann, s», cn, dn.
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A second ingenious idea, which belongs to Jacobi
as well as to Abel, is the introduction of the imagi-
nary into this theory. As Jacobi himself affirmed, it
was just this innovation which rendered possible the
solution of the enigma of the earlier theory. It turned
out that the new functions partake of the nature of
the trigonometric and exponential functions. While
the former are periodic only for real values of the ar-
gument, and the latter only for imaginary values, the
elliptic functions have two periods. It can safely be
said that Gauss as early as the beginning of the nine-
teenth century had recognised the principle of the
double period, a fact which was first made plain in
the writings of Abel.

Beginning with these two fundamental ideas, Ja-
cobi and Abel, each in his own way, made further
important contributions to the theory of elliptic func-
tions. Legendre had given a transformation of one
elliptic integral into another of the same form, but a
second transformation discovered by him was un-
known to Jacobi, as the latter after serious difficulties
reached the important result that a multiplication in
the theory of such functions can be composed of two
transformations. Abel applied himself to problems
concerning the division and multiplication of elliptic
integrals. A thorough study of double periodicity led
him to the discovery that the general division of the
elliptic integral with a given limit is always algebraic-
ally possible as soon as the division of the complete
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integrals is assumed as accomplished. The solution
of the problem was applied by Abel to the lemniscate,
and in this connection it was proved that the division
of the whole lemniscate is altogether analogous to
that of the circle, and can be performed algebraically
in the same case. Another important discovery of
Abel’s occurred in his allowing, for elliptic functions
of multiple argument, the multiplier to become infinite
in formulas deduced from functions with a single ar-
gument. From this resulted the remarkable expres-
sions which represent elliptic functions by infinite
series or quotients of infinite products.

Jacobi had assumed in his investigations on trans-
formations that the original variable is rationally ex-
pressible in terms of the new. Abel, however, entered
this field with the more general assumption that be-
tween these two quantities an algebraic equation ex-
ists, and the result of his labor was that this more
general problem can be solved by the help of the
special problem completely treated by Jacobi.

Jacobi carried still further many of the investiga-
tions of Abel. Abel had given the theory of the gen-
eral division, but the actual application demanded
" the formation of certain symmetric functions of the
roots which could be obtained only in special cases.
Jacobi gave the solution of the problem so that the
required functions of the roots could be obtained at
once and in a manner simpler than Abel’s. When
Jacobi had reached this goal, he stood alone on the
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broad expanse of the new science, for Abel a short
time before had found an early grave at the age of 27.

The later efforts of Jacobi culminate in the in-
troduction of the theta-function. Abel had already
represented elliptic functions as quotients of infinite
products. Jacobi could represent these products as
special cases of a single transcendent, a fact which
the French mathematicians had come upon in physical
researches but had neglected to investigate. Jacobi
examined their analytic nature, brought them into
connection with the integrals of the second and third
class, and noticed especially that integrals of the third
class, though dependent upon three elements, can be
represented by means of the new transcendent involv-
ing only two elements. The execution of this process
gave to the whole theory a high degree of comprehen-
siveness and clearness, allowing the elliptic functions
sn, ¢n, dn to be represented with the new Jacobian
transcendents @, @, ®;, @, as fractions having a com-
mon denominator.

What Abel accomplished in the theory of elliptic
functions is conspicuous, although it was not his
greatest achievement. There is high authority for
saying that the achievements of Abel were as great in
the algebraic field as in that of elliptic functions. But
his most brilliant results were obtained in the theory
of the Abelian functions named in his honor, their
first development falling in the years 1826-1829.
«Abel’s Theorem” has been presented by its discov-
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erer in different forms. The paper, Mémoire sur une
propridté générale d’une classe lrés-dlendue de fonctions
transcendentes, which after the death of the author re-
ceived the prize from the French academy, contained
the most general expression. In form it is a theorem
of the integral calculus, the integrals depending upon
an irrational function y, which is connected with x by
an algebraic equation F(x, y)=0. Abel’s fundamental
theorem states that a sum of such integrals can be
expressed by a definite number p of similar integrals
where p depends only upon the properties of the equa-
tion F(x, y)=0. (This p is the deficiency of the curve
F(x, )=0; the notion of deficiency, however, dates
first from the year 1857.) For the case that

 y=VAx*F B2*+ Cx? + Dx 1 E,
Abel's theorem leads to Legendre’s proposition on
the sum of two elliptic integrals. Here p=1. 1If
y=VAx*4+Bx°4 ... + P,
where 4 can also be 0, then pis 2, and so on. For
p =3, or > 3, the hyperelliptic integrals are only spe-
cial cases of the Abelian integrals of like class.

After Abel’s death (1829) Jacobi carried the theory
further in his Considerationes generales de transcendenti-
bus Abelianis (1832), and showed for hyperelliptic in-
tegrals of a given class that the direct functions to

which Abel’s proposition applies are not functions of
a single variable, as the elliptic functions s», ¢n, dn,
but are functions of p variables. Separate papers of
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essential significance for the case p=2, are due to
Rosenhain (1846, published 1851) and Goepel (1847).

Two articles of Riemann, founded upon the writ-
ings of Gauss and Cauchy, have become significant
in the development of the complete theory of func-
tions. Cauchy had by rigorous methods and by the
introduction of the imaginary variable ¢¢laid the foun-
dation for an essential improvement and transforma-
tion of the whole of analysis.”* Riemann built upon
this foundation and wrote the Grundlage fiir cine all-
gemeine Theorie der Funktionen einer wverdnderlichen
komplexen Grosse in the year 1851, and the Theorie der
Abel’schen Funktionen which appeared six years later.
For the treatment of the Abelian functions, Riemann
used theta-functions with several arguments, the the-
ory of which is based upon the general principle of
the theory of functions of a complex variable. He
begins with integrals of algebraic functions of the
most general form and considers their inverse func-
tions, that is, the Abelian functions of p variables.
Then a theta function of p variables is defined as the
sum of a p-tuply infinite exponential series whose
general term depends, in addition to p variables, upon
1’@_2—1)

certain constants which must be reducible

to 3p—3 moduli, but the theory has not yet been com-

pleted.
Starting from the works of Gauss and Abel as well

* Kummer, * Ged#chtnissrede auf Lej Dirichlet,” Berliner Abkand-
lungen, 1860.
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as the developments of Cauchy on integrations in the
imaginary plane, a strong movement appears in which
occur the names of Weierstrass, G. Cantor, Heine,
Dedekind, P. Du Bois-Reymond, Dini, Scheeffer,
Pringsheim, Holder, Pincherle, and others. This
tendency aims at freeing from criticism the founda-
tions of arithmetic, especially by a new treatment of
irrationals based upon the theory of functions with its
considerations of continuity and discontinuity. It
likewise considers the bases of the theory of series by
investigations on convergence and divergence, and
gives to the differential calculus greater preciseness
through the introduction of mean-value theorems.

After Riemann valuable contributions to the theory
of the theta-functions were made by Weierstrass,
Weber, Nother, H. Stahl, Schottky, and Frobenius.
Since Riemann a theory of algebraic functions and
point-groups has been detached from the theory of
Abelian functions, a theory which was founded through
the writings of Brill, Ndther, and Lindemann upon
the remainder-theorem and the Riemann-Roch theo-
rem, while recently Weber and Dedekind have allied
themselves with the theory of ideal numbers, set forth
in the first appendix to Dirichlet. The extremely
rich development of the general theory of functions
in recent years has borne fruit in different branches of
mathematical science, and undoubtedly is to be rec-
ognised as having furnished a solid foundation for the
work of the future.
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IV. GEOMETRY.

A. GENERAL SURVEY.

HE oldest traces of geometry are found among
the Egyptians and Babylonians. In this first
period geometry was made to serve practical purposes
almost exclusively. From the Egyptian and Baby-
lonian priesthood and learned classes geometry was
transplanted to Grecian soil. Here begins the second
period, a classic era of philosophic conception of geo-
metric notions as the embodiment of a general science
of mathematics, connected with the names of Pythag-
oras, Eratosthenes, Euclid, Apollonius, and Archi-
medes. The works of the last two indeed, touch upon
lines not clearly defined until modern times. Apollo-
nius in his Conic Sections gives the first real example
of a geometry of position, while Archimedes for the
most part concerns himself with the geometry of meas-
urement.

The golden age of Greek geometry was brief and
yet it was not wholly extinct until the memory of the
great men of Alexandria was lost in the insignificance
of their successors. Then followed more than a thou-



GEOMETRY. 191

sand years of a cheerless epoch which at best was re-
stricted to borrowing from the Greeks such geometric
knowledge as could be understood. History might
pass over these many centuries in silence were it not
compelled to give attention to these obscure and un-
productive periods in their relation to the past and
future. In this third period come first the Romans,
Hindus, and Chinese, turning the Greek geometry to
use after their own fashion ; then the Arabs as skilled
intermediaries between the ancient classic and a mod-
ern era.

The fourth period comprises the early develop-
ment of geometry among the nations of the West.
By the labors of Arab authors the treasures of a time
long past were brought within the walls of monasteries
and into the hands of teachers in newly established
schools and universities, without as yet forming a
subject for general instruction. The most prominent
intellects of this period are Vieta and Kepler. In
their methods they suggest the fifth period which be-
gins with Descartes. The powerful methods of analy-
sis are now introduced into geometry. Analytic geom-
etry comes into being. The application of its seductive
methods received the almost exclusive attention of
the mathematicians of the seventeenth and eighteenth
centuries. Then in the so-called modern or projective
geometry and the geometry of curved surfaces there
arose theories which, like analytic geometry, far tran-
scended the geometry of the ancients, especially in
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the way of leading to the almost unlimited generaliza-
tion of truths already known.

B. FIRST PERIOD.
EGYPTIANS AND BABYLONIANS.

In the same book of Ahmes which has disclosed to
us the elementary arithmetic of the Egyptians are
also found sections on geometry, the determination
of areas of simple surfaces, with figures appended.
These figures are either rectilinear or circular. Among
them are found isosceles triangles, rectangles, isos-
celes trapezoids and circles.* The area of the rect-
angle is correctly determined ; as the measure of the
area of the isosceles triangle with base a and side 4,
however, 44 is found, and for the area of the isosceles
trapezoid with parallel sides &’ and 4” and oblique side
5, the expression } (¢’ 4 4") 4 is given. These approx-
imate formulae are used throughout and are evidently
considered perfectly correct. The area of the circle
follows, with the exceptionally accurate value »—

16\?
22} =38.1605.
(9) 3.1605

Among the problems of geometric construction
one stands forth preeminent by reason of its practical
importance, viz., to lay off a right angle. The solu-
tion of this problem, so vital in the construction of
temples and palaces, belonged to the profession of

#*Cantor, I., p. 52.
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rope-stretchers or harpedonaptae. They used a rope
divided by knots into three segments (perhaps corre-
sponding to the numbers 3, 4, b) forming a Pythago-
ean triangle.*

Among the Babylonians the construction of figures
of religious significance led up to a formal geometry of
divination which recognized triangles, quadrilaterals,
right angles, circles with the inscribed regular hex-
agon and the division of the circumference into three
hundred and sixty degrees as well as a value #=3.

Stereometric problems, such as finding the con-
tents of granaries, are found in Ahmes; but not much
is to be learned from his statements since no account
is given of the shape of the storehouses.

As for projective representations, the Egyptian
wall-sculptures show no evidence of any knowledge
of perspective. For example a square pond is pic-
tured in the ground-plan but the trees and the water-
drawers standing on the bank are added to the picture
in the elevation, as it were from the outside.}

C. SECOND PERIOD.

THE GREEKS.

In a survey of Greek geometry it will here and
there appear as if investigations connected in a very
*Cantor, 1., p. 62.

t Wiener, Lekrbuch der darstellenden Geometrie, 1884. Hereafter referred
to as Wiener.
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simple manner with well-known theorems were not
known to the Greeks. At least it seems as if they
could not have been established satisfactorily, since
they are thrown in among other matters evidently
without connection. Doubtless the principal reason
for this is that a number of the important writings of
the ancient mathematicians are lost. Another no less
weighty reason might be that much was handed down
simply by oral tradition, and the latter, by reason of
the stiff and repulsive way in which most of the Greek
demonstrations were worked out, did not always ren-
der the truths set forth indisputable.

In Thales are found traces of Egyptian geometry,
but one must not expect to discover there all that was
known to the Egyptians. Thales mentions the theo-
rems regarding vertical angles, the angles at the base
of an isosceles triangle, the determination of a triangle
from a side and two adjacent angles, and the angle in-
scribed in a semi-circle. He knew how to determine
the height of an object by comparing its shadow with
the shadow of a staff placed at the extremity of the
shadow of the object, so that here may be found the
beginnings of the theory of similarity. In Thales the
proofs of the theorems are either not given at all or
are given without the rigor demanded in later times.

In this direction an important advance was made
by Pythagoras and his school. To him without ques-
tion is to be ascribed the theorem known to the Egyp-
tian ¢‘rope-stretchers” concerning the right-angled
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triangle, which they knew in the case of the tri-
angle with sides 3, 4, b, without giving a rigorous
proof. Euclid’s is the earliest of the extant proofs of
this theorem. Of other matters, what is to be ascribed
to Pythagoras himself, and what to his pupils, it is
difficult to decide. The Pythagoreans proved that the
sum of the angles of a plane triangle is two right an-
gles. They knew the golden section, and also the
regular polygons so far as they make up the bound-
aries of the five regular bodies. Also regular star-
polygons were known, at least the star-pentagon. In
the Pythagorean theorems of area the gnomon played
an important part. This word originally signified the
vertical staff which by its shadow indicated the hours,
and later the right angle mechanically represented.
Among the Pythagoreans the gnomon is the figure
left after a square has been taken from the corner of
another square. Later, in Euclid, the gnomon is a
parallelogram after similar treatment (see page 66).
The Pythagoreans called the perpendicular to a straight
line ¢¢a line directed according to the gnomon.”*
But geometric knowledge extended beyond the
school of Pythagoras. Anaxagoras is said to have been
the first to try to determine a square of area equal
to that of a given circle. It is to be noticed that like
most of his successors he believed in the possibility
of solving this problem. (Enopides showed how to
draw a perpendicular from a point to a line and how

# Cantor, 1., p. 150.
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to lay off a given angle at a given point of a given
line. Hippias of Elis likewise sought the quadrature
of the circle, and later he attempted the trisection of
an angle, for which he constructed the quadratrix.

B
L
K L 4
K'
Kl
A P ) o

This curve is described as follows : Upon a quadrant of a cir-
cumference cut off by two perpendicular radii, 04 and OB, lie
the points 4, . . . X, Z, . .. B. The radius » = 04 revolves with
uniform velocity about O from the position 04 to the position 05.
At the same time a straight line g always parallel to O4 moves
with uniform velocity from the position 04 to that of a tangent to
the circle at B. If K" is the intersection of g with OB at the time
when the moving radius falls upon OX then the parallel to 04
through X’ meets the radius OKX in a point X’ belonging to the
quadratrix. If Pis the intersection of 04 with the quadratrix, it
follows in part directly and in part from simple considerations, that

arc 4X __ 0K’
arc AL~ 0L
a relation which solves any problem of angle sections. Further-
more,
27 oP 04

OP= T O o = w1 A

whence it is obvious that the quadrature of the circle depends upon
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the ratio in which the radius O is divided by the point P of the
quadratrix. If this ratio could be constructed by elementary geom-
etry, the quadrature of the circle would be effected.* It appears
that the quadratrix was first invented for the trisection of an angle
and that its relation to the quadrature of the circle was discovered
later,  as is shown by Dinostratus.

The problem of the quadrature of the circle is also
found in Hippocrates. He endeavored to accomplish
his purpose by the consideration of crescent-shaped
figures bounded by arcs of circles. It is of especial
importance to note that Hippocrates wrote an ele-
mentary book of mathematics (the first of the kind)
in which he represented a point by a single capital
letter and a segment by two, although we are unable
to determine who was the first to introduce this sym-
bolism.

Geometry was strengthened on the philosophic
side by Plato, who felt the need of establishing defini-
tions and axioms and simplifying the work of the in-
vestigator by the introduction of the analytic method.

A systematic representation of the results of all
the earlier investigations in the domain of elementary
geometry, enriched by the fruits of his own abundant
labor, is given by Euclid in the thirteen books of his
Elements which deal not only with plane figures but
also with figures in space and algebraic investiga-

*The equation of the quadratrix in polar co-ordinates is = ? . ﬁ,
where a = OA. Putting ¢ =0, »r=7,, we have v = —:—a.
o

t Montucla.
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tions. ‘Whatever has been said in praise of mathe-
matics, of the strength, perspicuity and rigor of its
presentation, all is especially true of this work of the
great Alexandrian. Definitions, axioms, and conclu-
sions are joined together link by link as into a chain,
firm and inflexible, of binding force but also cold and
hard, repellent to a productive mind and affording no
room for independent activity. A ripened understand-
ing is needed to appreciate the classic beauties of this
greatest monument of Greek ingenuity. It is not the
arena for the youth eager for enterprise; to captivate
him a field of action is better suited where he may
hope to discover something new, unexpected.”*

The first book of the Elements deals with the the-
ory of triangles and quadrilaterals, the second book
with the application of the Pythagorean theorem to
a large number of constructions, really of arithmetic
nature. The third book introduces circles, the fourth
book inscribed and circumscribed polygons. Propor-
tions explained by the aid of line-segments occupy
the fifth book, and in the sixth book find their appli-
cation to the proof of theorems involving the similar-
ity of figures. The seventh, eighth, ninth and tenth
books have especially to do with the theory of num-
bers. These books contain respectively the measure-
ment and division of numbers, the algorism for de-
termining the least common multiple and the greatest
common divisor, prime numbers, geometric series,

* A, Brill, Antrittsrede in TRbingen, 1884,
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and incommensurable (irrational) numbers. Then
follows stereometry : in the eleventh book the straight
line, the plane, the prism; in the twelfth, the discus-
sion of the prism, pyramid, cone, cylinder, sphere;
and in the thirteenth, regular polygons with the regu-
lar solids formed from them, the number of which
Euclid gives definitely as five. Without detracting in
the least from the glory due to Euclid for the compo-
sition of this imperishable work, it may be assumed
that individual portions grew out of the well grounded
preparatory work of others. This is almost certainly
true of the fifth book, of which Eudoxus seems to
have been the real author.

Not by reason of a great compilation like Euclid,
but through a series of valuable single treatises, Archi-
medes is justly entitled to have a more detailed de-
scription of his geometric productions. In his inves-
tigations of the sphere and cylinder he assumes that
the straight line is the shortest distance between two
points. From the Arabic we have a small geometric
work of Archimedes consisting of fifteen so-called
lemmas, some of which have value in connection with
the comparison of figures bounded by straight lines
and arcs of circles, the trisection of the angle, and
the determination of cross-ratios. Of especial impor-
tance is his mensuration of the circle, in which he
shows = to lie between 3} and 3}¢. This as well as
many other results Archimedes obtains by the method
of exhaustions which among the ancients usually took
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the place of the modern integration.* The quantity
sought, the area bounded by a curve, for example,
may be considered as the limit of the areas of the in-
scribed and circumscribed polygons the number of
whose sides is continually increased by the bisection
of the arcs, and it is shown that the difference between
two associated polygons, by an indefinite continuance
of this process, must become less than an arbitrarily
small given magnitude. This difference was thus, as
it were, exhausted, and the result obtained by exhaus-
tion.

The field of the constructions of elementary geom-
etry received at the hands of Apollonius an extension
in the solution of the problem to construct a circle
tangent to three given circles, and in the systematic
introduction of the diorismus (determination or limi-
tation). This also appears in more difficult problems
in his Conic Sections, from which we see that Apollo-
nius gives not simply the conditions for the possibility
of the solution in general, but especially desires to
determine the limits of the solutions.

From Zenodorus several theorems regarding iso-
perimetric figures are still extant; for example, he
states that the circle has a greater area than any iso-
perimetric regular polygon, that among all isoperi-
metric polygons of the same number of sides the reg-
ular has the greatest area, and so on. Hypsicles gives

#Chasles, Apersu historique sur Dorigine et le développ ¢t des méthod
en géométrie, 1875. Hereafter referred to as Chasles,
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as something new the division of the circumference
into three hundred and sixty degrees. From Heron
we have a book on geometry (according to Tannery
still another, a commentary on Euclid’s Elements)
which deals in an extended manner with the mensu-
ration of plane figures. Here we find deduced for the
area A of the triangle whose sides are a, 4, and ,
where 2s=a 4 46 4 ¢, the formula
A=V's(s—a)(s—8) (s—o).

In the measurement of the circle we usually find 32 as
an approximation for #; but still in the Book of Meas-
urements we also find #=3.

In the period after the commencement gf the
Christian era the output becomes still more meager.
. Only occasionally do we find anything noteworthy.
Serenus, however, gives a theorem on transversals
which expresses the fact that a harmonic pencil is cut
by an arbitrary transversal in a harmonic range. In
the A/magest occurs the theorem regarding the in-
scribed quadrilateral, ordinarily known as Ptolemy’s
Theorem, and a value written in sexagesimal form
»=3.8.30, i. e.,

8 30 17
= T A — O = *
*=34 o5 + G065 =31sg = 314166 . ..

In a special treatise on geometry Ptolemy shows that
he does not regard Euclid’s theory of parallels as in-
disputable.

#Cantor, 1., p. 304.
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To the last supporters of Greek geometry belong
Sextus Julius Africanus, who determined the width of
a stream by the use of similar right-angled triangles,
and Pappus, whose name has become very well known
by reason of his Collection. This work consisting orig-
inally of eight books, of which the first is wholly
lost and the second in great part, presents the sub-
stance of the mathematical writings of special repute
in the time of the author, and in some places adds
corollaries. Since his work was evidently composed
with great conscientiousness, it has become one of
the most trustworthy sources for the study of the
mathematical history of ancient times. The geomet-
ric part of the Collection contains among other things
discussions of the three different means between two
line-segments, isoperimetric figures, and tangency of
circles. It also discusses similarity in the case of cir-
cles; so far at least as to show that all lines which
join the ends of parallel radii of two circles, drawn in
the same or in opposite directions, intersect in a fixed
point of the line of centers.

The Greeks rendered important service not simply
in the field of elementary geometry: they are also the
creators of the theory of conic sections. And as in
the one the name of Euclid, so in the other the name
of Apollonius of Perga has been the signal for con-
troversy. The theory of the curves of second order
does not begin with Apollonius any more than does
Euclidean geometry begin with Euclid; but what the
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Elements signify for elementary geometry, the eight
books of the Conics signify for the theory of lines of
the second order. Only the first four books of the
Conic Sections of Apollonius are preserved in the
Greek text: the next three are known through Arabic
translations: the eighth book has never been found
and is given up for lost, though its contents have been
restored by Halley from references in Pappus. The
first book deals with the formation of conics by plane
sections of circular cones, with conjugate diameters,
and with axes and tangents. The second has espe-
cially to do with asymptotes. These Apollonius ob-
tains by laying off on a tangent from the point of con-
tact the half-length of the parallel diameter and joining
its extremity to the center of the curve. The third
~ book contains theorems on foci and secants, and the
fourth upon the intersection of circles with conics and
of conics with one another. With this the elementary
treatment of conics by Apollonius closes. The fol-
lowing books contain special investigations in applica-
tion of the methods developed in the first four books.
Thus the fifth book deals with the maximum and min-
imum lines which can be drawn from a point to the
conic, and also with the normals from a given point
in the plane of the curve of the second order; the sixth
with equal and similar conics; the seventh in a re-
markable manner with the parallelograms having con-
jugate diameters as sides and the theorem upon the
sum of the squares of conjugate diameters. The eighth
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book contained, according to Halley, a series of prob-
lems connected in the closest manner with lemmas of
the seventh book.

The first effort toward the development of the the-
ory of conic sections is ascribed to Hippocrates.* He
reduced the duplication of the cube to the construc-
tion of two mean proportionals x and y between two
given line-segments @ and 4; thust

a _x __y

=57 =7% gives x3=ay, y? =jx, whence

a8 =a%= —§~as=m-a’.

Archytas and Eudoxus seem to have found, by plane
construction, curves satisfying the above equations
but different from straight lines and circles. Menaech-
mus sought for the new curves, already known by
plane constructions, a representation by sections of
cones of revolution, and became the discoverer of
conic sections in this sense. He employed only sec-
tions perpendicular to an element of a right circular
cone; thus the parabola was designated as the ¢‘sec-
tion of a right-angled cone” (whose generating angle
is 46°); the ellipse, the ‘“section of an acute-angled
cone”; the hyperbola, the ‘‘section of an obtuse-
angled cone.” These names are also used by Archi-
medes, although he was aware that the three curves
can be formed as sections of any circular cone. Apol-

® Zeuthen, Die Lekre von dem Kegelschnittem im Altertum. Deutsch von
v. Pischer-Benzon, 1886. P. 459. Hereafter referred to as Zeuthen,

+ Cantor, 1., p. 200.
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lonius first introduced the names ¢‘ellipse,’ ¢‘para-
bola,” ¢hyperbola.” Possibly Menaechmus, but in
any case Archimedes, determined conics by a linear
equation between areas, of the form y¥=—4xx;. The
semi-parameter, with Archimedes and possibly some
of his predecessors, was known as ‘‘the segment to
the axis,” i. e., the segment of the axis of the circle
from the vertex of the curve to its intersection with
the axis of the cone. The designation ¢‘parameter”
is due to Desargues (1639).*

It has been shown $ that Apollonius represented the conics by
equations of the form y?=px 4-ax? where x and y are regarded
as parallel codrdinates and every term is represented as an area.
From this other linear equations involving areas were derived, and
so equations belonging to analytic geometry were obtained by the
use of a system of parallel codrdinates whose origin could, for
geometric reasons, be shifted simultaneously with an interchange
of axes. Hence we already find certain fundamental ideas of the
analytic geometry which appeared almost two thousand years later.

The study of conic sections was continued upon the
cone itself only till the time when a single fundamen-
tal plane property rendered it possible to undertake
the further investigation in the plane.i In this way
there had become known, up to the time of Archi-
medes, a number of important theorems on conjugate
diameters, and the relations of the lines to these di-
ameters as axes, by the aid of linear equations be-

*Baltzer, R., Analytische Geometrie, 1882,
t Zeuthen, p. 32. 1 Zeuthen, p. 43.



206 HISTORY OF MATHEMATICS.

tween areas. There were also known the so-called
Newton’s power-theorem, the theorem that the rect-
angles of the segments of two secants of a conic drawn
through an arbitrary point in given direction are in a
constant ratio, theorems upon the generation of a
conic by aid of its tangents or as the locus related to
four straight lines, and the theorem regarding pole
and polar. But these theorems were always applied
to only one branch of the hyperbola. One of the valu-
able services of Apollonius was to extend his own
theorems, and consequently those already known, to
both branches of the hyperbola. His whole method
justifies us in regarding him the most prominent rep-
resentative of the Greek theory of conic sections, and
so much the more when we can see from his principal
work that the foundations for the theory of projective
ranges and pencils had virtually been laid by the an-
cients in different theorems and applications.
With Apollonius the period of new discoveries in
" the realm of the theory of conics comes to an end. In
ldter times we find only applications of long known
theorems to problems of no great difficulty. Indeed,
the solution of problems already played an important
part in the oldest times of Greek geometry and fur-
nished the occasion for the exposition not only of
conics but also of curves of higher order than the sec-
ond. In the number of problems, which on account
of their classic value have been transmitted from gen-
eration to generation and have continually furnished
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occasion for further investigation, three, by reason of
their importance, stand forth preéminent: the duplica-
tion of the cube, or more generally the multiplication
of the cube, the trisection of the angle and the quad-
rature of the circle. The appearance of these three
problems has been of the greatest significance in the
development of the whole of mathematics. The first
requires the solution of an equation of the third de-
gree; the second (for certain angles at least) leads to
an important section of the theory of numbers, i. e.,
to the cyclotomic equations, and Gauss (see p. 160)
was the first to show that by a finite number of ope-
rations with straight edge and compasses we can con-
struct a regular polygon of n sides only when n—1
=2¥ (p an arbitrary integer). The third problem
reaches over into the province of algebra, for Linde-
mann* in the year 1882 showed that = cannot be the
root of an algebraic equation with integral coefficients.

The multiplication of the cube, algebraically the
determination of x from the equation

x8 = _6_.‘;3 =m-a‘,
a

is also called the Delian problem, because the Delians
were required to double their cubical altar.{ The so-
lution of this problem was specially studied by Plato,
Archytas, and Menaechmus; the latter solved it by

*Mathem, Annalen, XX., p. 215. See also Mathem. Annalen, XLIII., and

Klein, Fe Probl of El tary G try, 1895, translated by Beman
and Smith, Boston, 1897.

1 Cantor, 1., p. 219.
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the use of conics (hyperbolas and parabolas). Era-
tosthenes constructed a mechanical apparatus for the
same purpose.

Among the solutions of the problem of the trisec-
tion of an angle, the method of Archimedes is note-
worthy. It furnishes an example of the so-called
‘““insertions” of which the Greeks made use when a
solution by straight edge and compasses was impos-
sible. His process was as follows: Required to divide
the arc 4B of the circle with center M into three
equal parts. Draw the diameter 4, and through B
a secant cutting the circumference in C and the di-
ameter AE in D, so that CD equals the radius » of
the circle. Then arc CE=}4B.

B

: D
A M E

According to the rules of insertion the process con-
sists in laying off upon a ruler a length 7, causing it
to pass through B while one extremity D of the seg-
ment 7 slides along the diameter 4£. By moving
the ruler we get a certain position in which the other
extremity of the segment 7 falls upon the circumfer-
ence, and thus the point C is determined.

This problem Pappus claims to have solved after
the manner of the ancients by the use of conic sec-
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tions. Since in the writings of Apollonius, so largely
lost, lines of the second order find an extended appli-
cation to the solution of problems, the conics were
frequently called solid loci in opposition to plane loci,
i. e., the straight line and circle. Following these
came linear loci, a term including all other curves, of
which a large number were investigated.

This designation of the loci is found, for example,
in Pappus, who says in his seventh book * that a prob-
lem is called plane, solid, or linear, according as its
solution requires plane, solid, or linear loci. It is,
however, highly probable that the loci received their
names from problems, and that therefore the division
of problems into plane, solid, and linear preceded the
designation of the corresponding loci. First it is to
be noticed that we do not hear of ¢‘linear problems
and loci” till after the terms ¢¢plane and solid prob-
lems and loci” were in use. Plane problems were
those which in the geometric treatment proved to be
dependent upon equations of the first or second de-
gree between segments, and hence could be solved
by the simple application of areas, the Greek method
for the solution of quadratic equations. Problems de-
pending upon the solution of equations of the third
degree between segments led to the use of forms of
three dimensions, as, e. g., the duplication of the
cube, and were termed solid problems; the loci used
in their solution (the conics) were solid loci. At a

* Zeuthen, p. 203.
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time when the significance of ‘‘plane” and ‘¢solid”
was forgotten, the term ¢‘linear problem” was first
applied to those problems whose treatment (by ¢‘lin-
ear loci”) no longer led to equations of the first, sec-
ond, and third degrees, and which therefore could no
longer be represented as linear relations between seg-
ments, areas, or volumes.

Of linear loci Hippias applied the quadratrix (to
which the name of Dinostratus was later attached
through his attempt at the quadrature of the circle)*
to the trisection of the angle. Eudoxus was acquainted
with the sections of the torus made by planes parallel
to the axis of the surface, especially the hippopede or
figure-of-eight curve.t The spirals of Archimedes
attained special celebrity. His exposition of their
properties compares favorably with his elegant inves-
tigations of the quadrature of the parabola.

Conon had already generated the spiral of Archi-
medes} by the motion of a point which recedes with
uniform velocity along the radius O4 of a circle 2
from the center O, while 04 likewise revolves uni-
formly about 0. But Archimedes was the first to dis-
cover certain of the beautiful properties of this curve;
he found that if, after one revolution, the spiral meets
the circle Z of radius O4 in B (where BO is tangent
to the spiral at O), the area bounded by B0 and the

#Cantor, 1., pp. 184, 233.
t Majer, Proklos iiber die Petita und Axiomata bei Euklid, 1875.

1 Cantor, 1., p. 201.
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spiral is one-third of the area of the circle %4; further
that the tangent to the spiral at B cuts off from a per-
pendicular to OB at O a segment equal to the circum-
ference of the circle £.*

The only noteworthy discovery of Nicomedes is
the construction of the conchoid which he employed
to solve the problem of the two mean proportionals,
or, what amounts to the same thing, the multiplica-
tion of the cube. The curve is the geometric locus of
the point X upon a moving straight line ¢ which con-
stantly passes through a fixed point 2P and cuts a fixed
straight line % in ¥ so that XY has a constant length.
Nicomedes also investigated the properties of this
curve and constructed an apparatus made of rulers
for its mechanical description.

The cissoid of Diocles is also of use in the multi-
plication of the cube. It may be constructed as fol-
lows: Through the extremity 4 of the radius 04 of
a circle % passes the secant 4 C which cuts 4 in C and
the radius OB perpendicular to O4 in D; X, upon
AC, is a point of the cissoid when DX=DC.t Gemi-
nus proves that besides the straight line and the circle
the common helix invented by Archytas possesses the
insertion property.

Along with the geometry of the plane was devel-
oped the geometry of space, first as elementary stere-

*Montucla.

tKlein, F., Famous Problems of Elementary Geometry, trauslated by Beman
and Smith, Boston, 1897, p. 44.
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ometry and then in theorems dealing. with surfaces of
the second order. The knowledge of the five regular
bodies and the related circumscribed sphere certainly
goes back to Pythagoras. According to the statement
of Timaeus of Locri,* fire is made up of tetrahedra,
air of octahedra, water of icosahedra, earth of cubes,
while the dodecahedron forms the boundary of the
universe. Of these five cosmic or Platonic bodies
Theaetetus seems to have been the first to publish a
connected treatment. Eudoxus states that a pyramid
(or cone) is } of a prism of equal base and altitude.
The eleventh, twelfth and thirteenth books of Euclid’s
Elements offer a summary discussion of the ordinary
stereometry. (See p. 199.) Archimedes introduces
thirteen semi-regular solids, i. e., solids whose bound-
aries are regular polygons of two or three different
kinds. Besides this he compares the surface and vol-
ume of the sphere with the corresponding expressions
for the circumscribed cylinder and deduces theorems
which he esteems so highly that he expresses the de-
sire to have the sphere and circumscribed cylinder
cut upon his tomb-stone. Among later mathemati-
cians Hypsicles and Heron give exercises in the men-
suration of regular and irregular solids. Pappus also
furnishes certain stereometric investigations of which
we specially mention as new only the determination
of the volume of a solid of revolution by means of the
meridian section and the path of its center of gravity.

*Cantor, L., p. 163.
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He thus shows familiarity with a part of the theorem
later known as Guldin’s rule.

Of surfaces of the second order the Greeks knew
the elementary surfaces of revolution, i. e., the sphere,
the right circular cylinder and circular cone. Euclid
deals only with cones of revolution, Archimedes on the
contrary with circular cones in general. In addition,
Archimedes investigates the ¢‘right-angled conoids”
(paraboloids of revolution), the ¢‘obtuse-angled co-
noids” (hyperboloids of revolution of one sheet), and
“¢long and flat spheroids” (ellipsoids of revolution
about the major and minor axes). He determines the
character of plane sections and the volume of seg-
ments of such surfaces. Probably Archimedes also
knew that these surfaces form the geometric locus of
a point whose distances from a fixed point and a given
plane are in a constant ratio. According to Proclus,*
who is of importance as a commentator upon Euclid,
the torus was also known—a surface generated by a
circle of radius 7 revolving about an axis in its plane
so that its center describes a circle of radius e. The
cases r=¢, > ¢, <e¢ were discussed.

With methods of projection, also, the Greeks were
not unacquainted.t Anaxagoras and Democritus are
said to have known the laws of the vanishing point
and of reduction, at least for the simplest cases. Hip-
parchus projects the celestial sphere from a pole upon

*Majer, Proklos ber die Petita und Axiomnata bet Euklid, 1875,
+ Wiener.
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the plane of the equator; he is therefore the inventor
of the stereographic projection which has come to be
known by the name of Ptolemy.

D. THIRD PERIOD.
ROMANS, HINDUS, CHINESE, ARABS.

Among no other people of antiquity did geometry
reach so high an eminence as among the Greeks.
Their acquisitions in this domain were in part trans-
planted to foreign soil, yet not so that (with the
possible exception of arithmetic calculation) anything
essentially new resulted. Frequently what was in-
herited from the Greeks was not even fully under-
stood, and therefore remained buried in the literature
of the foreign nation. From the time of the Renais-
sance, however, but especially from that of Descartes,
an entirely new epoch with more powerful resources
investigated the ancient treasures and laid them under
contribution.

Among the Romans independent investigation of
mathematical truths almost wholly disappeared. What
they obtained from the Greeks was made to serve
practical ends exclusively. For this purpose parts of
Euclid and Heron were translated. To simplify the
work of the surveyors or agrimensores, imf)ortant geo-
metric theorems were collected into a larger work of
which fragments are preserved in the Codex Arceri-
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anus. In the work of Vitruvius on architecture
(¢.—14) is found the value » =3} which, though less
accurate than Heron’s value x=23}, was more easily
employed in the duodecimal system.* Boethius has
left a special treatise on geometry, but the contents
are so paltry that it is safe to assume that he made
use of an earlier imperfect treatment of Greek geom-
etry.

Although the Hindu geometry is dependent upon
the Greek, yet it has its own peculiarities due to the
arithmetical modes of thought of the people. Certain
parts of the Culvasutras are geometric. These teach
the rope-stretching already known to the Egyptians,
i. e., they require the construction of a right angle by
means of a rope divided by a knot into segments 15
and 39 respectively, the ends being fastened to a seg-
ment 36 (1562 4 362—=39%). They also use the gnomon
and deal with the transformation of figures and the
application of the Pythagorean theorem to the multi-
plication of a given square. Instead of the quadrature
of the circle appears the circulature of the square,t
i. e, the construction of a circle equal to a given
square. Here the diameter is put equal to $ of the
diagonal of the square, whence follows ==3} (the
value used among the Romans). In other cases a
process is carried on which yields the value »=3.

The writings of Aryabhatta contain certain incor-
rect formulae for the mensuration of the pyramid and

*Cantor, 1., p. 508. t Cantor, 1., p. 6o1.
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sphere (for the pyramid V'=4.B8%), but also a number
of perfectly accurate geometric.theorems. Aryabhatta
gives the approximate value »—$3§34 —3.1416.
Brahmagupta teaches mensurational or Heronic ge-
ometry and is familiar with the formula for the area
of the triangle,

A=ViG—a)G—H(—o,

and the formula for the area of the inscribed quadri-
lateral,

i=V(s—a)(s—b)(s—o)(s—d),

which he applies incorrectly to any quadrilateral. In
his work besides =3 we also find the value »=1/10,
but without any indication as to how it was obtained.
Bhaskara likewise devotes himself only to algebraic
geometry. For x he gives not only the Greek value
22 and that of Aryabhatta §3§33, but also a value
w=534=3.14166 . . . Of geometric demonstrations
Bhaskara knows nothing. He states the theorem,
adds the figure and writes ‘Behold ! ”*

In Bhaskara a transfer of geometry from Alexan-
dria to India is undoubtedly demonstrable, and per-
haps this influence extended still further eastward to
the Chinese. In a Chinese work upon mathematics,
composed perhaps several centuries after Christ, the
Pythagorean theorem is applied to the triangle with
sides 3, 4, §; rope-stretching is indicated ; the ver

*Cantor, 1., p. 614.
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tices of a figure are designated by letters after the
Greek fashion; = is put equal to 8, and toward the
end of the sixth century to 3a.

Greek geometry reached the Arabs in part directly
and in part through the Hindus. The esteem, how-
ever, in which the classic works of Greek origin were
held could not make up for the lack of real produc-
tive power, and so the Arabs did not succeed in a
single point in carrying theoretic geometry, even in
the subject of conic sections, beyond what had been
reached in the golden age of Greek geometry. Only
a few particulars may be mentioned. In Al Khowa-
razmi is found a proof of the Pythagorean theorem
consisting only of the separation of a square into
eight isosceles right-angled triangles. On the whole
Al Khowarazmi draws more from Greek than from
Hindu sources. The classification of quadrilaterals
is that of Euclid; the calculations are made after
Heron's fashion. Besides the Greek value » =32 we
find the Hindu values »=§3§33 and »=110. Abul
Wafa wrote a book upon geometric constructions.
In this are found combinations of several squares into
a single one, as well as the construction of polyhedra
after the methods of Pappus. After the Greek fash-
ion the trisection of the angle occupied the attention
of Tabit ibn Kurra, Al Kuhi, and Al Sagani. Among
later mathematicians the custom of reducing a geo-
metric problem to the solution of an equation is com-
mon. It was thus that the Arabs by geometric solu-
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tions attained some excellent results, but results of no
theoretic importance.

E. FOURTH PERIOD.

FROM GERBERT TO DESCARTES.

Among the Western nations we find the first traces
of geometry in the works of Gerbert, afterward known
as Pope Sylvester I1. Gerbert, as it seems, depends
upon the Codex Arcerianus, but also mentions Pyth-
agoras and Eratosthenes.* We find scarcely anything
here besides field surveying as in Boethius. Some-
thing more worthy first appears in Leonardo’s (Fibo-
nacci’s) Practica geometriact of 1220, in which work
reference is made to Euclid, Archimedes, Heron, and
Ptolemy. The working over of the material handed
down from the ancients, in Leonardo’s book, is fairly
independent. Thus the rectification of the circle
shows where this mathematician, without making use

of Archimedes, determines from the regular polygon

. 1440
of 96 sides the value »— E@}i =3.1418.

Since among the ancients no proper theory of star
polygons can be established, it is not to be wondered
at that the early Middle Ages have little to show in
this direction. Star-polygons had first a mystic sig-
nificance only ; they were used in the black art as the
pentacle, and also in architecture and heraldry. Adel-

*Cantor, I, p. 810. + Hankel, p. 344.
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ard of Bath went with more detail into the study of
star-polygons in his commentary on Euclidean geom-
etry; the theory of these figures is first begun by Re-
giomontanus.

The first German mathematical work is the Deut-
sche Sphira written in Middle High German by Conrad
of Megenberg, probably in Vienna in the first half of
the fourteenth century. The first popular introduc-
tion to geometry appeared anonymously in the fif-
teenth century, in six leaves of simple rules of con-
struction for geometric drawing. The beginning, con-
taining the construction of BC perpendicular to 48
by the aid of the right-angled triangle 48C in which
BE bisects the hypotenuse 4C, runs as follows:*
““From geometry some useful bits which are written
after this. 1. First to make a right angle quickly.
Draw two lines across each other just about as you
wish and where the lines cross each other there put
ane. Then place the compasses with one foot upon
the point ¢, and open them out as far as you wish,
and make upon each line a point. Let these be the
letters a, &, ¢, all at one distance. Then make a line
from a to 4 and from 4 to ¢. So you have a right angle
of which here is an example.”

This construction of a right angle, not given in
Euclid but first in Proclus, appears about the year
1500 to be in much more extensive use than the
method of Euclid by the aid of the angle inscribed in

# Giinther, p. 347.



220 HISTORY OF MATHEMATICS.

a semi-circle. By his knowledge of this last construc-
tion Adam Riese is said to have humiliated an archi-
tect who knew how to draw a right angle only by the
method of Proclus.

Very old printed works on geometry in German are Dz Puech-
len der fialen gerechtikait by Mathias Roriczer (1486) and Al-
brecht Diirer's Underweysung der messung mit dem zivckel
und richtscheyt (Nuremberg, 1525). The former gives in rather
unscientific manner rules for a special problem of Gothic architec-
ture ; the latter, however, is a far more original work and on that
account possesses more interest.*

With the extension of geometric knowledge in
Germany Widmann and Stifel were especially con-
cerned. Widmann’s geometry, like the elements of
Euclid, begins with explanations: ¢ Punctus is a small
thing that cannot be divided. Angulus is a corner
which is made there by two lines.”t+ Quadrilaterals
have Arab names, a striking evidence that the ancient
Greek science was brought into the West by Arab in
fluence. Nevertheless, by Roman writers (Boethius)
Widmann is led into many errors, as, e. g., when he
gives the area of the isosceles triangle of side @ as }a3.

In Rudolff’s Coss, in the theory of powers, Stifel
has occasion to speak of a subject which first receives
proper estimation in the modern geometry, viz., the
right to admit more than three dimensions. ¢‘Since,
however, we are in arithmetic where it is permitted
to invent many things that otherwise have no form,

*Giinther in Schlomilch’s Zeitschrift, XX., HL. 2.
+ Gerhardt. Gesckickhte der Math tik in Deutschland, 1877.
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this also is permitted which geometry does not allow,
namely to assume solid lines and surfaces and go be-
yond the cube just as if there were more than three
dimensions, which is, of course, against nature. .
But we have such good indulgence on account of the
charming and wonderful usage of Coss.” *

Stifel after the manner of Ptolemy extends the
study of regular polygons and after the manner of
Euclid the construction of regular solids. He dis-
cusses the quadrature of the circle, considering the
latter as a polygon of infinitely many sides, and de-
clares the quadrature impossible. According to Al-
brecht Direr’s Underweysung, etc., the quadrature of
the circle is obtained when the diagonal of the square
contains ten parts of which the diameter of the circle
contains eight, i. e., ¥=3}. It is expressly stated,
however, that this is only an approximate construc-
tion. ‘“We should need to know guadratura circul,
that is the making equal a circle and a square, so that
the one should contain as much as the other, but this
has not yet been demonstrated mechanically by schol-
ars; but that is merely incidental ; therefore so that
in practice it may fail only slightly, if at all, they may
be made equal as follows.

*Stifel, Die Coss Christoffs Rudolffs. Mit schdnen Exempeln der Coss.
Durch Michael Stifel Geb t vad sehr g hrt, . . . Gegeben zum Haber-
sten | bei Knigsberg in Pr | den letst tag dess Herbstmonds | im
Jar 1552, . . . Zu Amsterdam Getruckt bey Wilhem Janson. Im Jar 161s.

t Diirer, Underweysung der messung mit dem sivckel vnd richischeyt in
Linien ebnen vnd gantsen corporen. Durch Albrecht Diirer zusamen getzogn
vnd zu nutz alln kunstlieb habenden mit zu gehdrigen figuren in truck
gebracht im jar MDXXV. (Consists of vier Biicklein.)
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Upon the mensuration of the circle* there appeared in 1584 a

1521

work by Simon van der Eycke in which the value 7= prvy wi

given. By calculating the side of the regular polygon of 192 sides

Ludolph van Ceulen found (probably in 1585) that w <C8.14205 <

%‘241. In his reply Simon v. d. Eycke determined m =238.1446055,
whereupon L. v. Ceulen in 1586 computed m between 8.142732

and 8.14103. Ludolph van Ceulen’s papers contain a value of 7
to 85 places, and this value of the Ludolphian number was put
upon his tombstone (no longer known) in St. Peter's Church in
Leyden. Ceulen’s investigations led Snellius, Huygens, and others
to further studies. By the theory of rapidly converging series it
was first made possible to compute 7 to 500 and more decimals.}

A revival of geometry accompanied the activity of
Vieta and Kepler. With these investigators begins a
period in which the mathematical spirit commences
to reach out beyond the works of the ancients.} Vieta
completes the analytic method of Plato; in an ingeni-
ous way he discusses the geometric construction of
roots of equations of the second and third degrees;
he also solves in an elementary manner the problem
of the circle tangent to three given circles. Still
more important results are secured by Kepler. .For
him geometry furnishes the key to the secrets of the
world. With sure step he follows the path of induc-
tion and in his geometric investigations freely con-
forms to Euclid. Kepler established the symbolism
of the ¢‘golden section,” that problem of Eudoxus

*Rudio, F., Das Problem von der Quadratur des Zirkels, Ziirich, 18g0.
+D. Bierens de Haan in Néeww. Arch., 1.; Cantor, IL., p. ss1.
1 Chasles.
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stated in the sixth book of Euclid’s Elements: ¢“To
divide a limited straight line in extreme and mean
ratio.” * This problem, for which Kepler introduced
the designation sectio divina as well as proportio divina,
is in his eyes of so great importance that he expresses
himself: ¢‘“Geometry has two great treasures: one is
the theorem of Pythagoras, the other the division of
a line in extreme and mean ratio. The first we may
compare to a mass of gold, the second we may call a
precious jewel.”

The expression ‘* golden section” is of more modern origin.
It occurs in none of the text-books of the eighteenth century and
appears to have been formed by a transfer from ordinary arithme-
tic. In the arithmetic of the sixteenth and seventeenth centuries
the rule of three is frequently called the ‘‘ golden rule.” Since the
beginning of the nineteenth century this golden rule has given way
more and more before the so-called Scilussrechnen (analysis) of
the Pestalozzi school. Consequently in place of the ‘‘golden rule,”
which is no longer known to the arithmetics, there appeared in the
elementary geometries about the middle of the nineteenth century
the ‘‘ golden section,” probably in connection with contemporary
endeavors to attribute to this geometric construction the impor-
tance of a natural law.

Led on by his astronomical speculations, Kepler
made a special study of regular polygons and star-
polygons. He considered groups of regular polygons
capable of elementary construction, viz., the series of
polygons with the number of sides given by 4-2%,
3+2%, 5-2", 16-2* (from =0 on), and remarked that

* Sonnenburg, Der goldene Schnitt, 1881.
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a regular heptagon cannot be constructed by the help
of the straight line and circle alone. Further there is
no doubt that Kepler well understood the Conmics of
Apollonius and had experience in the solution of prob-
lems by the aid of these curves. In his works we
first find the term ¢‘foci” for those points of conic
sections which in earlier usage are known as puncia
ex comparatione, puncta ex applicatione facta, umbilici,
or ‘“poles”;* also the term ¢‘eccentricity” for the
distance from a focus to the center divided by the
semi-major axis, of the curve of the second order, and
the name ¢‘‘eccentric anomaly” for the angle 2’04,
where O4 is the semi-major axis of an ellipse and 7
the point in which the ordinate of a point 2 on the
curve intersects the circle upon the major axis.t

Also in stereometric investigations, which had been
cultivated to a decided extent by Diirer and Stifel,
Kepler is preéminent among his contemporaries. In
his Harmonice Mundi he deals not simply with the
five regular Platonic and thirteen semi-regular Archi-
medean solids, but also with star-polygons and star-
dodecahedra of twelve and twenty vertices. Besides
this we find the determination of the volumes of solids
obtained by the revolution of conics about diameters,
tangents, or secants. Similar determinations of vol-
umes were effected by Cavalieri and Guldin. The
former employed a happy modification of the method

*C. Taylor, in Cambr. Proc., IV.
t Baltzer, R., Amalytische Geometrie, 1882.
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of exhaustions, the latter used a rule already known
to Pappus but not accurately established by him.

To this period belong the oldest known attempts
to solve geometric problems with only one opening of
the compasses, an endeavor which first found accurate
scientific expression in Steiner’s Geometrische Con-
struktionen, ausgefiihrt mitlels der geraden Linie und
eines festen Kreises (1833). The first traces of such
constructions go back to Abul Wafa.* From the Arabs
they were transmitted to the Italian school where they
appear in the works of Leonardo da Vinci and Cardan.
The latter received his impulse from Tartaglia who
used processes of this sort in his problem-duel with
Cardan and Ferrari. They also occur in the Resolutio
omnium Euclidis problematum (Venice, 15663) of Bene-
dictis, a pupil of Cardan, in the Geometria deutsck and
in the construction of a regular pentagon by Diirer.
In his Underweysung, etc., Diirer gives a geometrically
accurate construction of the regular pentagon but also
an approximate construction of the same figure to be
made with a circle of fixed radius.

This method of constructing a regular pentagon on 45 is as
follows: About 4 and B as centers, with radius 4B, construct cir-
cles intersecting in Cand D. The circle about D as a center with
the same radius cuts the circles with centers at 4 and B in £ and
F and the common chord CD in G. The same circles are cut by
FG and EG in Jand A. AJ and BH are sides of the regular
pentagon. (The calculation of this symmetric pentagon shows

*Giinther in Scklomilch's Zestschrift, XX. Cantor, 1., p. 700.
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HBA=108°20', while the corresponding angle of the regular
pentagon is 108°.)

In Diirer and all his successors who write upon rules of geo-
metric construction, we find an approximate construction of the
regular heptagon : ‘' The side of the regular heptagon is half that
of the equilateral triangle,” while from calculation the half side
of the equilateral triangle =0.998 of the side of the heptagon.
Daniel Schwenter likewise gave constructions with a single opening
of the compasses in his Geometria practica nova et aucta (1625).
Dfrer, as is manifest from his work Underweysung dey messung,
etc., already cited several times, also rendered decided service in
the theory of higher curves. He gave a general conception of the
notion of asymptotes and found as new forms of higher curves cer-
tain cyclic curves and mussel-shaped lines.

From the fifteenth century on, the methods of pro-
jection make a further advance. Jan van Eyck* in
the great altar painting in Ghent makes use of the
laws of perspective, e. g., in the application of the

* Wiener.
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vanishing point, but without a mathematical grasp of
these laws. This is first accomplished by Albrecht
Diirer who in his Underweysung der messung mit dem
sirckel und richtscheyt makes use of the point of sight
and distance-point and shows how to construct the
perspective picture from the ground plan and eleva-
tion. In Italy perspective was developed by the archi-
tect Brunelleschi and the sculptor Donatello. The
first work upon this new theory is due to the architect
Leo Battista Alberti. In this he explains the perspec-
tive image as the intersection of the pyramid of visual
rays with the picture-plane. He also mentions an in-
strument for constructing it, which consists of a frame
with a quadratic net-work of threads and a similar
net-work of lines upon the drawing surface. He also
gives the method of the distance-point as invented by
him, by means of which he then pictures the ground
divided into quadratic figures.* This process received
a further extension at the hands of Piero della Fran-
cesca who employed the vanishing points of arbitrary
horizontal lines.

In German territory perspective was cultivated
with special zeal in Nuremberg where the goldsmith
Lencker, some decades after Direr, extended the lat-
ter’s methods. The first French study of perspective
is due to the artist J. Cousin (1660) who in his Lsvre

_de la perspective made use of the point of sight and the
distance-point, besides the vanishing points of hori-

*Wiener.
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zontal lines, after the manner of Piero. Guido Ubaldi
goes noticeably further when he introduces the van-
ishing point of series of parallel lines of arbitrary di-
rection. What Ubaldi simply foreshadows, Simon
Stevin clearly grasps in its principal features, and in
an important theorem he lays the foundation for the
development of the theory of collineation.

F. FIFTH PERIOD.
FROM DESCARTES TO THE PRESENT.

Since the time of Apollonius many centuries had
elapsed and yet no one had succeeded in reaching the
full height of Greek geometry. This was partly be-
cause the sources of information were relatively few,
and attainable indirectly and with difficulty, and partly
" because men, unfamiliar with Greek methods of in-
vestigation, looked upon them with devout astonish-
ment. From this condition of partial paralysis, and
of helpless endeavor longing for relief, geometry was
delivered by Descartes. This was not by a simple ad-
dition of related ideas to the old geometry, but merely
by the union of algebra with geometry, thus giving
rise to analytic geometry.

By way of preparation many mathematicians, first
of all Apollonius, had referred the most important ele-
mentary curves, namely the conics, to their diameters
and tangents and had expressed this relation by equa-
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tions of the first degree between areas, so that cer-
tain relations were obtained between line-segments
identical with abscissas and ordinates.

In the conics of Apollonius we find expressions
which have been translated ¢‘ordinatim applicatae”
and ‘‘abscissae.” For the former expression Fermat
used ¢‘“applicate” while others wrote ¢‘ordinate.”
Since the time of Leibnitz (1692) abscissas and ordi-
nates have been called ¢¢co-ordinates.” *

Even in the fourteenth century we find as an ob-
ject of study in the universities a kind of co-ordinate
geometry, the ¢latitudines formarum.” ¢ Latitudo”t
signified the ordinate, ‘‘longitudo” the abscissa of a
variable point referred to a system of rectangular co-_
ordinates, and the different positions of this point
formed the ¢figura.” The technical words longitude
and latitude had evidently been borrowed from the
language of astronomy. In practice of this art Oresme
confined himself to the first quadrant in which he
dealt with straight lines, circles, and even the para-
bola, but always so that only a positive value of a co-
ordinate was considered.

Among the predecessors of Descartes we reckon,
besides Apollonius, especially, Vieta, Oresme, Cava-
lieri, Roberval, and Fermat, the last the most distin-
guished in this field; but nowhere, even by Fermat,
had any attempt been made to refer several curves of

* Baltzer, R., Analytische Geometrie, 1882,
4 Giinther, p. 181,
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different orders simultaneously to one system of co-
ordinates, which at most possessed special significance
for one of the curves. It is exactly this thing which
Descartes systematically accomplished.

The thought with which Descartes made the laws
of arithmetic subservient to geometry is set forth by
himself in the following manner: *

¢¢ All problems of geometry may be reduced to such
terms that for their construction we need only to know
the length of certain right lines. And just as arith-
metic as a whole comprises only four or five opera-
tions, viz., addition, subtraction, multiplication, divi-
sion, and evolution, which may be considered as a
kind of division, so in geometry to prepare the lines
;ought to be known we have only to add other lines
to them or subtract others from them; or, having one
which I call unity (so as better to refer it to numbers),
which can ordinarily be taken at pleasure, having two
others to find a fourth which shall be to one of these
as the other is to unity, which is the same as multi-
plication;} or to find a fourth which shall be to one
of the two as unity is to the other which is the same
as division ;] or finally to find one or two or several
mean proportionals between unity and any other line,
which is the same as to extract the square, cube, . . .
root.§ I shall not hesitate to introduce these terms

* Marie, M., Histoire des Sciences Mathématiques et Physigues, 1883-188;.
tcia=0b:1, c=abd.

fc:a=1:5 c=a:b.

§1:6=a:b=bicmcid=.., gives amyb=V:=Vd,,
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of arithmetic into geometry in order to render myself
more intelligible. It should be observed that, by a3,
8%, and similar quantities, I understand as usual sim-
ple lines, and that I call them square or cube only so
as to employ the ordinary terms of algebra.” (a3 is
the third proportional to unity and @, or 1:a=a:a3,
and similarly §:43=43:83.) .

This method of considering arithmetical expres-
sions was especially influenced by the geometric dis-
coveries of Descartes. As Apollonius had already de-
termined points of a conic section by parallel chords,
together with the distances from a tangent belonging
to the same system, measured in the direction of the
conjugate diameter, so with Descartes every point of
a curve is the intersection of two straight lines. Apol-
lonius and all his successors, however, apply such
systems of parallel lines only occasionally and that for
the sole purpose of presenting some definite property
of the conics with especial distinctness. Descartes,
on the contrary, separates these systems of parallel
lines from the curves, assigns them an independent
existence and so obtains for every point on the curve
a relation between two segments of given direction,
which is nothing else than an equation. The geo-
metric study of the properties of this curve can then
be replaced by the discussion of the equation after the
methods of algebra. The fundamental elements for
the determination of a point of a curve are its co-or-
dinates, and from long known theorems it was evident
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that a point of the plane can be fixed by two co-ordi-
nates, a point of space by three.

Descartes’s Geometry is not, perhaps, a treatise
on analytic geometry, but only a brief sketch which
sets forth the foundations of this theory in outline.
Of the three books which constitute the whole work
only the first two deal with geometry; the third is of
algebraic nature and contains the celebrated rule of
signs illustrated by a simple example, as well as the
solution of equations of the third and fourth degrees
with the construction of their roots by the use of
conics.

The first impulse to his geometric reflections was
due, as Descartes himself says, to a problem which
according to Pappus had already occupied the atten-
tion of Euclid and Apollonius. It is the problem to
find a certain locus related to three, four, or several
lines. Denoting the distances, measured in given di-
rections, of a point P from the straight lines g1, g3. . .

g. by a1, es. . . ¢,, respectively, we shall have
. . e
for three straight lines: —— ‘2 =4
aeg
. . e
for four straight lines: — L 3
€3 €4
. . erege
for five straight lines: =2 — 2,
a €4 ¢

and so on. The Greeks originated the solution of the
first two cases, which furnish conic sections. No ex-
ample could have shown better the advantage of the

— et e e et g
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new method. For the case of three lines Descartes
denotes a distance by y, the segment of the corres-
ponding line between the foot of this perpendicular
and a fixed point by x, and shows that every other
segment involved in the problem can be easily con-
structed. Further he states ‘‘that if we allow y to
grow .gradually by infinitesimal increments, x will
grow in the same way and thus we may get infinitely
many points of the locus in question.”

The curves with which Descartes makes us gradu-
ally familiar he classifies so that lines of the first and
second orders form a first group, those of the third
and fourth orders a second, those of the fifth and
sixth orders a third, and so on. Newton was the first
to call a curve, which is defined by an algebraic equa-
tion of the nth degree between parallel co-ordinates, a
line of the nth order, or a curve of the (z—1)th class.

"The division into algebraic and transcendental curves
was introduced by Leibnitz; previously, after the
Greek fashion, the former had been called geometric,
the latter mechanical lines.*

Among the applications which Descartes makes,
the problem of tangents is prominent. This he treats
in a peculiar way: Having drawn a normal to a curve
at the point 2P, he describes a circle through P with
the center at the intersection of this normal with the

#Baltzer, R., Analytische Geometrie, 1882. Up to the time of Descartes
all lines except straight lines and conics were called mechanical. He was

the first to apply the term geometric lines to curves of degree higher than
the second.
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X-axis, and asserts that this circle cuts the curve at P
in two consecutive points; i. e., he states the condi-
tion that after the elimination of x the equation in y
shall have a double root.

A natural consequence of the acceptance of the
Cartesian co-ordinate system was the admission of
negative roots of algebraic equations. These negative
roots had now a real significance ; they could be rep-
resented, and hence were entitled to the same rights
as positive roots.

In the period immediately following Descartes,
geometry was enriched by the labors of Cavalieri,
Fermat, Roberval, Wallis, Pascal, and Newton, not
at first by a simple application of the co-ordinate ge-
ometry, but often after the manner of the ancient
Greek geometry, though with some of the methods
essentially improved. The latter is especially true of
Cavalieri, the inventor of the method of indivisibles,*
which a little later was displaced by the integral ca'-
culus, but may find a place here since it rendered ser-
vice to geometry exclusively. Cavalieri enjoyed work-
ing with the geometry of the ancients. For example,
he was the first to give a satisfactory proof of the so-
called Guldin’s rule already stated by Pappus. His
chief endeavor was to find a general process for the
determination of areas and volumes as well as centers
of gravity, and for this purpose he remodelled the

*In French works Méthode des indivisibles, orlgmally in the work Geo-
metria indivisibilibus ¢ um mova dam ¥ ¢a, Bol

L I i) B
1635.
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method of exhaustions. Inasmuch as Cavalieri's
method, of which he was master as early as 1629, may
even to-day replace to advantage ordinary integration
in elementary cases, its essential character may be set
forth in brief outline.*

If y=/(x) is the equation of a curve in rectangu-
lar co-ordinates, and he wishes to determine the area
bounded by the axis of x, a portion of the curve, and
the ordinates corresponding to x¢ and =z, Cavalieri
divides the difference 'xl—xo into 7z equal parts. Let
% represent such a part and let n be taken very large.
An element of the surface is then =Ay=4#4f(x), and
the whole surface becomes

n—1
21;~f(x., + nk).
0
For n—=o we evidently get exactly
231
JS(x)dx.
Zo

But this is not the quantity which Cavalieri seeks to
determine. He forms only the ratios of portions of
the area sought, to the rectangle with base x;—xo
and altitude y, so that the quantity to be determined
is the following:

n—1

n—1
DS @otak) D flwotnh)
0 _ 0
Y OO

Cavalieri applies this formula, which he derives in

* Marie.
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complete generality from grounds of analogy, only to
the case where f(x) is of the form 4x= (m=2, 3, 4).
The extension to further cases was made by Rober
val, Wallis, and Pascal.

In the simplest cases the method of indivisibles gives the fol-
lowing results.* For a parallelogram the indivisible quantity or
element of surface is a parallel to the base; the number of indi-
visible quantities is proportional to the altitude; hence we have
as the measure of the area of the parallelogram the product of the
measures of the base and altitude. The corresponding conclusion
holds for the prism. In order to compare the area of a triangle
with that of the parallelogram of the same base and altitude, we
decompose each into elements by equidistant parallels to the base.
The elements of the triangle are then, beginning with the least, 1,
2, 8, ... n; those of the parallelogram, n, n, . . . ». Hence the
ratio

__Triangle 1+2+’"+“=‘"(”+1)=.1_(1+l)~

Parallelogram n'n nd 2 n/’

whence for n = we get the value §. For the corresponding solids
we get likewise

Pyramid 13 4-92 -|- . 4-n? _innt 1) (2 41)
Prism
=51+ —) (43

After the lapse of a few decades this analytic-
geometric method of Cavalieri’s was forced into the
background by the integral calculus, which could be
directly applied in all cases. At first, however, Rober-
val, known by his method of tangents, trod in the
footsteps of Cavalieri. Wallis used the works of Des-

* Marie.
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cartes and Cavalieri simultaneously, and considered
especially curves whose equations were of the form
y=a", m integral or fractional, positive or negative.
His chief service consists in this, that in his brilliant
work he put a proper estimate upon Descartes’s dis-
covery and rendered it more accessible. In this work
Wallis also defines the conics as curves of the second
degree, a thing never before done in this definite
manner.

Pascal proved to be a talented disciple of Cavalieri
and Desargues. In his work on conics, composed
about 1639 but now lost (save for a fragment),* we
find Pascal’s theorem of the inscribed hexagon or
Hexagramma mysticum -as he termed it, which Bessel
rediscovered in 1820 without being aware of Pascal’s
earlier work, also the theorem due to Desargues that
if a straight line cuts a conic in P and @, and the
sides of an inscribed quadrilateral in 4, B, C, D, we
have the following equation:

PA-PC __ QA4-QC

PB-PD ~ QC-QD
Pascal’s last work deals with a curve called by him
the roulette, by Roberval the trochoid, and generally
known later as the cycloid. Bouvelles (15603) already
knew the construction of this curve, as did Cardinal
von Cusa in the preceding century.i Galileo, as is
shown by a letter to Torricelli in 1639, had made (be

* Cantor, II., p. 622. 1 Bianco in Zorino Att., XXI.
% Cantor, II., pp. 186, 351.
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ginning in 1590) an exhaustive study of rolling curves
in connection with the construction of bridge arches.
The quadrature of the cycloid and the determination
of the volume obtained by revolution about its axis
had been effected by Roberval, and the construction
of the tangent by Descartes. In the year 16568 Pascal
was able to determine the length of an arc of a cy-
cloidal segment, the center of gravity of this surface,
and the corresponding solid of revolution. Later the
cycloid appears in physics as the brachistochrone and
tautochrone, since it permits a body sliding upon it to
pass from one fixed point to another in the shortest
time, while it brings a material point oscillating upon
it to its lowest position always in the same time.
Jacob and John Bernoulli, among others, gave atten-
tion to isoperimetric problems; but only the former
secured any results of value, by furnishing a rigid
method for their solution which received merely an
unimportant simplification from John Bernoulli. (See
pages 178-179.)

The decades following Pascal’s activity were in
large part devoted to the study of tangent problems
and the allied normal problems, but at the same time
the general theory of plane curves was constantly
developing. Barrow gave a new method of determin-
ing tangents, and Huygens studied evolutes of curves
and indicated the way of determining radii of curva
ture. From the consideration of caustics, Tschirn
hausen was led to involutes and Maclaurin constructed
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the circle of curvature at any point of an algebraic
curve. The most important extension of this theory
was made in Newton's Enumeratio linearum tertss or-
dinis (1706). This treatise establishes the distinction
between algebraic and transcendental curves. It then
makes an exhaustive study of the equation of a curve
of the third order, and thus finds numerous such curves
which may be represented as ¢“shadows ” of five types,
a result which involves an analytic theory of perspec-
tive. Newton knew how to construct conics from five
tangents. He came upon this discovery in his en-
deavor to investigate ‘‘after the manner of the an-
cients” without analytic geometry. Further he con-
sidered multiple points of a curve at a finite distance
and at infinity, and gave rules for investigating the
course of a curve in the neighborhood of one of its
points (‘*Newton’s parallelogram” or ¢‘analytic tri-
angle), as also for the determination of the order of
contact of two curves at one of their common points.
(Leibnitz and Jacob Bernoulli had also written upon
osculations; Plicker (1831) called the situation where
two curves have Z consecutive points in common ¢‘a
%-pointic contact”; in the same case Lagrange (1779)
had spoken of a ““contact of (#—1)th order.”)}
Additional work was done by Newton’s disciples,
Cotes and Maclaurin, as well as by Waring. Mac-
laurin made interesting investigations upon corre-

*Baltzer.
t Cayley, A., Address to the British Association, etc., 1883.
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spon(iing points of a curve of the third order, and
thus showed that the theory of these curves was much
more comprehensive than that of conics. Euler like-
wise entered upon these investigations in his paper
Sur une contradiction apparente dans la théorie des courbes
planes (Berlin, 1748), where it is shown that by eight in-
tersections of two curves of the third order the ninth is
completely determined. This theorem, which includes
Pascal’s theorem for conics, introduced point groups,
or systems of points of intersection of two curves, into
geometry. This theorem of Euler's was noticed in
1760 by Cramer who gave special attention to the sin-
gularities of curves in his works upon the intersection
of two algebraic curves of higher order; hence the
obvious contradiction between the number of points
determining a plane curve and the number of inde-
pendent intersections of two curves of the same order
bears the name of ¢‘Cramer’s paradox.” This contra-
diction was solved by Lamé in 1818 by the principle
which bears his name.* Partly in connection with
known results of the Greek geometry, and partly in-
dependently, the properties of certain algebraic and
transcendental curves were investigated. A curve
which is formed like the conchoid of Nicomedes, if
we replace the straight line by a circle, is called by

* Loria, G., Die hauptsichlichsten Theorien dey Geometrie in ihrer friike-
rven und jetsigen Entwicklung. Deutsch von Schiitte, 1888. For a more accu-
rate account of Cramer’s paradox, in which proper credit is given to Mac-
laurin’s discovery, see Scott, C. A., ‘' On the Intersections of Plane Curves,’’
Bull, Am. Mathk. Soc., March, 1898,
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Roberval the limagon of Pascal. The cardioid of the
eighteenth century is a special case of this spiral. If,
with reference to two fixed points 4, B, a point P
satisfies the condition that a linear function of the
distances P4, PB has a constant value, then is the
locus of P a Cartesian oval. This curve was found by
Descartes in his studies in dioptrics. For P4:PB=—
constant, we have Cassini’s oval, which the astronomer
of Louis XIV. wished to regard as the orbit of a planet
instead of Kepler’s ellipse. In special cases Cassini’s
oval contains a loop, and this form received from
Jacob Bernoulli (1694) the name lemniscate. With
the investigation of the logarithmic curve y=—a* was
connected the study made by Jacob and John Ber-
noulli, Leibnitz, Huygens, and others, of the curve of
equilibrium of an inextensible, flexible thread. This
furnished the catenary (cafenaria, 1691), the idea of
which had already occurred to Galileo.* The group
of spirals found by Archimedes was enlarged in the
seventeenth and eighteenth centuries by the addition
of the hyperbolic, parabolic, and logarithmic spirals,
and Cotes’s lituus (1722). In 1687 Tschirnhausen de-
fined a quadratrix, differing from that of the Greeks,
as the locus of a point 2, lying at the same time upon
LQ||BO and upon MP| 04 (O4B is a quadrant),
where Z moves over the quadrant and M over the
radius OB uniformly. Whole systems of curves and
surfaces were considered. Here belong the investiga-

*Cantor, III., p. 211.



242 HISTORY OF MATHEMATICS.

tions of involutes and evolutes, envelopes in general,
due to Huygens, Tschirnhausen, John Bernoull,
Leibnitz, and others. The consideration of the pen-
cil of rays through a point in the plane, and of the
pencil of planes through a straight line in space, was
introduced by Deéargues, 1639.*

The extension of the Cartesian co-ordinate method
to space of three dimensions was effected by the labors
of Van Schooten, Parent, and Clairaut.t Parent rep-
resented a surface by an equation involving the three
co-ordinates of a point in space, and Clairaut per-
fected this new procedure in a most essential manner
by a classic work upon curves of double curvature.
Scarcely thirty years later Euler established the ana-
lytic theory of the curvature of surfaces, and the clas-
sification of surfaces in accordance with theorems
analogous to those used in plane geometry. He gives
formulae of transformation of space co-ordinates and
a discussion of the general equation of surfaces of the
second order, with their classification. Instead of -
Euler’s names: ‘‘elliptoid, elliptic-hyperbolic, hyper-
bolic-hyperbolic, elliptic-parabolic, parabolic-hyper-
bolic surface,” the terms now in use, ‘‘ellipsoid, hyper-
boloid, paraboloid,” were naturalized by Biot and
Lacroix.}

Certain special investigations are worthy of men-
tion. In 1663 Wallis studied plane sections and
effected the cubature, of a conoid with horizontal di-

* Baltzer. + Loria. $ Baltzer.
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recting plane whose generatrix intersects a vertical
directing straight line and vertical directing circle
(cono-cuneus). To Wren we owe an investigation of
the hyperboloid of revolution of two sheets (1669)
which he called ¢‘cylindroid.” The domain of gauche
curves, of which the Greeks knew the common helix
of Archytas and the spherical spiral corresponding in
formation to the plane spiral of Archimedes, found an
extension in the line which cuts under a constant an-
gle the meridians of a sphere. Nufiez (1546) had
recognized this curve as not plane, and Snellius (1624)
had given it the name loxodromia sphaerica. The prob-
lem of the shortest line between two points of a sur-
face, leading to gauche curves which the nineteenth
century has termed ¢‘geodetic lines,” was stated by
John Bernoulli (1698) and taken in hand by him with
good results. In a work of Pitot in 1724 (printed in
1726)* upon the helix, we find for the first time the
expression ligne @ double courbure, line of double curva-
ture, for a gauche curve. In 1776 and 1780 Meusnier
gave theorems upon the tangent planes to ruled sur-
faces, and upon the curvature of a surface at one of
its points, as a preparation for the powerful develop-
ment of the theory of surfaces soon to begin.t

There are still some minor investigations belong-
ing to this period deserving of mention. The alge-
braic expression for the distance between the centers
of the inscribed and circumscribed circles of a triangle

*Cantor, 111., p. 428. 1 Baltzer.
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was determined by William Chapple (about 1746),
afterwards by Landen (17556) and Euler (1765).* In
1769 Meister calculated the areas of polygons whose
sides, limited by every two consecutive vertices, inter-
sect so that the perimeter contains a certain number
of double points and the polygon breaks up into cells
with simple or multiple positive or negative areas.
Upon the areas of such singular polygons Mﬁbius.pub—
lished later investigations (1827 and 1865).* Saurin
considered the tangents of a curve at multiple points
and Ceva starting from static theorems studied the
transversals of geometric figures. Stewart still further
extended the theorems of Ceva, while Cotes deter-
mined the harmonic mean between the segments of a
secant to a curve of the nth order reckoned from a
fixed point. Carnot also extended the theory of trans-
versals. Lhuilier solved the problem: In a circle to
inscribe a polygon of » sides passing through = fixed
points. Brianchon gave the theorem concerning the
hexagon circumscribed about a conic dualistically re-
lated to Pascal’s theorem upon the inscribed hexagon.
The application of these two theorems to the surface
of the sphere was effected by Hesse and Thieme. In
the work of Hesse a Pascal hexagon is formed upon-
the sphere by six points which lie upon the intersec-
tion of the sphere with a cone of the second order
having its vertex at the center of the sphere. Thieme
selects a right circular cone. The material usually

* Fortschritte, 1887, p. 32. + Baltzer.
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taken for the elementary geometry of the schools has
among other things received an extension through
numerous theorems upon the circle named after K.
W. Feuerbach (1822), upon symmedian lines of a
triangle, upon the Grebe point and the Brocard fig-
ures (discovered in part by Crelle, 1816 ; again intro-
duced by Brocard, 1876).*

The theory of regular geometric figures received
its most important extension at the hands of Gauss,
who discovered noteworthy theorems upon the possi-
bility or impossibility of elementary constructions of
regular polygons. (See p. 160.) Poinsot elaborated
the theory of the regular polyhedra by publishing his
views on the five Platonic bodies and especially upon
the ¢¢Kepler-Poinsot regular solids of higher class,”
viz., the four star-polyhedra which are formed from
the icosahedron and dodecahedron. These studies
were continued by Wiener, Hessel, and Hess, with
the removal of certain restrictions, so that a whole
series of solids, which in an extended sense may be
regarded as regular, may be added to those named
above. Corresponding studies for four-dimensional
space have been undertaken by Scheffler, Rudel,
Stringham, Hoppe, and Schlegel. They have deter-
mined that in such a space there exist six regular fig-
ures of which the simplest has as its boundary five
tetrahedra: The boundaries of the remaining five fig-

* Lieber, Ueber die Gegenmittellinie, dem Grebe'schem Punkt und dew Bro-
card schem Kreis, 1886-1888.
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ures require 16 or 600 tetrahedra, 8 hexahedra, 24 oc-
tahedra, 120 dodecahedra.* It may be mentioned
further that in 1849 the prismatoid was introduced
into stereometry by E. F. August, and that Schubert
and Stoll so generalised the Apollonian contact prob-
lem as to be able to give the construction of the six-
teen spheres tangent to four given spheres.
Projective geometry, called less precisely modern
geometry or geometry of position, is essentially a
creation of the nineteenth century. The analytic ge-
ometry of Descartes, in connection ‘with the higher
analysis created by Leibnitz and Newton, had regis-
tered a series of important discoveries in the domain
of the geometry of space, but it had not succeeded in
obtaining a satisfactory proof for theorems of pure
geometry. Relations of a specific geometric character
had, however, been discovered in constructive draw-
ing. Newton’s establishment of his five "principal
types of curves of the third order, of which the sixty-
four remaining types may be regarded as projections,
had also given an impulse in the same direction. Still
more important were the preliminary works of Carnot,
~ which paved the way for the development of the new
theory by Poncelet, Chasles, Steiner, and von Staudt.
They it was who discovered ¢‘the overflowing spring
of deep and elegant theorems which with astonishing
facility united into an organic whole, into the graceful
edifice of projective geométry, which, especially with

* Serret, Essai d’une nouvelle méthode, etc., 1873.
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reference to the theory of curves of the second order,
may be regarded as the ideal of a scientific organism.”*

Projective geometry found its earliest unfolding on
French soil in the Gométrie descriptive of Monge whose
astonishing power of imagination, supported by the
methods of descriptive geometry, discovered a host of
properties of surfaces and curves applicable to the
classification of figures in space. His work created
¢“‘for geometry the hitherto unknown idea of geomet-
ric generality and geometric elegance,”t and the im-
portance of his works is fundamental not only for the
theory of projectivity but also for the theory of the
curvature of surfaces. To the introduction of the
~ imaginary into the considerations of pure geometry
Monge likewise gave the first impulse, while his pupil
Gaultier extended these investigations by defining the
radical axis of two circles as a secant of the same
passing through their intersections, whether real or
imaginary.

The results of Monge’s school thus derived, which
were more closely related to pure geometry than to
the analytic geometry of Descartes, consisted chiefly
in a series of new and interesting theorems upon sur-
faces of the second order, and thus belonged to the
same field that had been entered upon before Monge’s
time by Wren (1669), Parent and Euler. That Monge

*Brill, A.. Antrittsrede in TRbingen, 1884.
+ Hankel, Die El te dev pr . Rdsienk G trie in o thetischer Be-
handlung, 1875.
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did not hold analytic methods in light esteem is shown
by his dpplication de I'algébre & la géométrie (1805) in
which, as Pliicker says, ‘‘he introduced the equation
of the straight line into analytic geometry, thus laying
the foundation for the banishment of all constructions
from it, and gave it that new form which rendered
further extension possible.”

While Monge was working by preference in the
space of three dimensions, Carnot was making a spe-
cial study of ratios of magnitudes in figures cut by
transversals, and thus, by the introduction of the nega-
tive, was laying the foundation for a ge'ométr)e de posi-
tion which, however, is not identical with the Geometrie
der Lage of to-day. Not the most important, but the
most noteworthy contribution for elementary school
geometry is that of Carnot’s upon the complete quadri-
lateral and quadrangle.

Monge and Carnot having removed the obstacles
which stood in the way of a natural development of
geometry upon its own territory, these new ideas could
now be certain of a rapid development in well-pre-
pared soil. Poncelet furnished the seed. His work,
Trasté des propriétés projectives des figures, which ap-
peared in 1822, investigates those properties of figures
which remain unchanged in projection, i. e., their in-
variant properties. The projection is not made here,
as in Monge, by parallel rays in a given direction, but
by central projection, and so after the manner of per-
spective. In this way Poncelet came to introduce
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_ the axis of perspective and center of persp_ective (ac-
cording to Chasles, axis and center of homology) in
the consideration of plane figures for which Desargues
had already established the fundamental theorems.
In 1811 Servois had used the expression ¢ pole of a
straight line,” and in 1813 Gergonne the terms ¢‘polar
of a point " and ¢‘duality,” but in 1818 Poncelet de-
veloped some observations made by Lahire in 1685,
upon the mutual correspondence of pole and polar in
the case of conics, into a method of transforming fig-
ures into their reciprocal polars. Gergonne recog-

‘nized in this theory of reciprocal polars a principle
whose beginnings were known to Vieta, Lansberg,
and Snellius, from spherical geometry. He called it
the ¢ principle of duality ” (1826). In 1827 Gergonne
associated dualistically with the notion of order of a
plane curve that of its class. The line is of the nth
order when a straight line of the plane cuts it in »
points, of the nth class when from a point in the plane
n tangents can be drawn to it.*

While in France Chasles alone interested himself
thoroughly in its advancement, this new theory found
its richest development in the third decade of the
nineteenth century upon German soil, where almost
at the same time the three great investigators, Mébius,
Plicker, and Steiner entered the field. From this
time on the synthetic and more constructive tendency
followed by Steiner, von Staudt, and Mébius divergest

* Baltzer, tBrill, A., Antrittsrede in Titbingen, 1
884,
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from the analytic side of the modern geometry which
Plicker, Hesse, Aronhold, and Clebsch had especially
developed.

The Barycentrischer Calciil in the year 1827 fur-
nished the first example of homogeneous co-ordinates,
and along with them a symmetry in the developed
formulae hitherto unknown to analytic geometry. In
this calculus Mébius started with the assumption that
every point in the plane of a triangle 48C may be re-
garded as the center of gravity of the triangle. In
this case there belong to the points corresponding
weights which are exactly the homogeneous co-ordi-
nates of the point P with respect to the vertices of
the fundamental triangle 4BC. By means of this
algorism Md&bius found by algebraic methods a series
of geometric theorems, for example those expressing
invariant properties like the theorems on cross-ratios.
These theorems, found analytically, Mdbius sought to
demonstrate geometrically also, and for this purpose
he introduced with all its consequences the ¢‘law of
signs” which expresses that for 4, B, C, points of a
straight line, AB—=—B4, AB+ BA=0, AB+BC
+ C4=0.

Independently of M3bius, but starting from the same prin-
ciples, Bellavitis came upon his new geometric method of equi-
pollences.# Two equal and parallel lines drawn in the same direc-

tion, 48 and CD, are called equipollent (in Cayley’s notation 48
=CD). By this assumption the whole theory is reduced to the

*Bellavitis, * Saggio di Applicazioni di un Nuovo Metodo di Geometria
Anglitica (Calcolo delle Equipollenze),” in Awn. Lomb. Veneto, t. 5, 1835,
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consideration of segments proceeding from a fxed point. Further
it is assumed that 48 4- BC= AC (Addition). Finally for the seg-
ments a, b, ¢, d, with inclinations a, B8, 7, 6 to a fixed axis, the
equation a = %’f must not only be a relation between lengths but
must also show that a=p 4 y—dJ (Proportion). For d=1 and
a=0 this becomes a =2, i. e., the product of the absolute values
of the lengths is @ =&c and at the same time a =g -y (Multipli-
cation). Equipollence is therefore only a special case of the equal-
ity of two objects, applied to segments.*

Mobius further introduced the consideration of
correspondences of two geometric figures. The one-
to-one correspondence, in which to every point of a
first figure there corresponds one and only one point
of a second figure and to every point of the second
one and only one point of the first, Mébius called col-
lineation. He constructed not only a collinear image
of the plane but also of ordinary space.

These new and fundamental ideas which Mé&bius
had laid down in the barycentric calculus remained
for a long time almost unheeded and hence did not at
once enter into the formation of geometric concep-
tions. The works of Plicker and Steiner found a
more favorable soil. The latter ‘“had recognized in
immediate geometric perception the sufficient means
and the only object of his knowledge. Plicker, on
the other hand,} sought his proofs in the identity of
the analytic operation and the geometric construc-

*Stolz, O., Vorlesungen Wber allgemeine Arithmetik, 1885-1886.

t*Clebsch, Versuch einer Darlegung und Wiirdigung seiner wissenschaft-
lichen Leistungen von einigen seiner Freunde (Brill, Gordan, Klein, Liiroth,
A. Mayer, N8ther, Von der Miihll),” in Math. Ann., Bd. 7.
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tion, and regarded geometric truth only as one of the
many conceivable antitypes of analytic relation.”

At a later period (18656) M&bius engaged in the
study of involutions of higher degree. Such an invo-
lution of the mth degree consists of two groups each
of m points: 4y, As, As, ... A4,; By, By, Bs,... B,,
which form two figures in such a way that to the 1st,
2d, 3d, . . . mth points of one group, as points of the
first figure, there correspond in succession the 2d, 3d,
4th . . . 1st points of the same group as points of the
second figure, with the same determinate relation. In-
volutions of higher degree had been previously studied
by Poncelet (1843). He started from the theorem
given by Sturm (1826), that by the conic sections of
the surfaces of the second order #=0, v=0, 2+ v
=0, there are determined upon a straight line six
points, 4, 4', B, B', C, C’' in involution, i. e., so that
in the systems ABCA'B'C’' and 4'B'C'ABC not only
A and 4', B and B, C and C’, but also 4’ and 4, B’
and B, C' and C are corresponding point-pairs. This
mutual correspondence of three point-pairs of a line
Desargues had already (in 1639) designated by the
term ‘‘involution.” *

Pliicker is the real founder of the modern analytic
tendency, and he attained this distinction by ¢¢formu-
lating analytically the principle of duality and follow-
ing out its consequences.”t His Analytisch-geometri-
sche Untersuchungen appeared in 1828. By this work

* Baltzer. t Brill, A., Antrittsrede in Tibingen, 1884.
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was created for geometry the method of symbolic no-
tation and of undetermined coefficients, whereby one
is freed from the necessity, in the consideration of the -
mutual relations of two figures, of referring to the
system of co-ordinates, so that he can deal with the
figures themselves. The System der analytischen Geo-
metrie of 1830 furnishes, besides the abundant appli-
cation of the abbreviated notation, a complete classi-
fication of plane curves of the third order. In the
Theorie der algebraischen Kurven of 1839, in addition
to an investigation of plane curves of the fourth order
there appeared those analytic relations between the
ordinary singularities of plane curves which are gen-
erally known as ‘¢ Pliicker’s equations.”

These Pliicker equations which at first are applied
only to the four dualistically corresponding singulari-
ties (point of inflexion, double point, inflexional tan-
gent, double tangent) were extended by Cayley to
curves with higher singularities. By the aid of devel-
opments in series he derived four ‘‘equivalence num-
bers” which enable us to determine how many singu-
larities are absorbed into a singular point of higher
order, and how the expression for the deficiency of
the curve is modified thereby. Cayley’s results were
confirmed, extended, and completed as to proofs by
the works of Néther, Zeuthen, Halphen, and Smith.
The fundamental question arising from the Cayley
method of considering the subject, whether and by
what change of parameters a curve with correspond-
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ing elementary singularities can be derived from a
curve with higher singularity, for which the Pliicker
and deficiency equations are the same, has been
studied by A. Brill.

Pliicker’s greatest service consisted in the intro-
duction of the straight line as a space element. The
principle of duality had led him to introduce, besides
the poiht in the plane, the straight line, and in space
the plane as a determining element. Pliicker also
used in space the straight line for the systematic gen-
eration of geometric figures. His first works in this
direction were laid before the Royal Society in Lon-
don in 1865. They contained theorems on complexes,
congruences, and ruled surfaces with some indications
of the method of proof. The further development
appeared in 1868 as Newe Geomelrie des Raumes, ge-
griindet auf die Betrachtung der geraden Linie als Raum-
element. Plicker had himself made a study of linear
complexes but his completion of the theory of com-
plexes of the second degree was interrupted by death.
Further extension of the theory of complexes was
made by F. Klein.

" The results contained in Pliicker’s last work have
thrown a flood of light upon the difference between
plane and solid geometry. The curved line of the
plane appears as a simply infinite system either of -
points or of straight lines; in space the curve may be
regarded as a simply infinite system of points, straight
lines or planes; but from another point of view this
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curve in space may be replaced by the developable
surface of which it is the edge of regression. Special
cases of the curve in space and the developable sur-
face are the plane curve and the cone. A further
space figure, the general surface, is on the one side a
doubly infinite system of points or planes, but on the
other, as a special case of a complex, a triply infinite
system of straight lines, the tangents to the surface.
As a special case we have the skew surface or ruled
surface. Besides this the congruence appears as a
doubly, the complex as a triply, infinite system of
straight lines. The geometry of space involves a num-
ber of theories to which plane geometry offers no anal-
ogy. Here belong the relations of a space curve to
the surfaces which may be passed through it, or of a
surface to the gauche curves lying upon it. To the
lines of curvature upon a surface there is nothing
corresponding in the plane, and in contrast to the
consideration of the straight line as the shortest line
between two points of a plane, there stand in space
two comprehensive and difficult theories, that of the
geodetic line upon a given surface and that of the
minimal surface with a given boundary. The ques-
tion of the analytic representation of a gauche curve
involves peculiar difficulties, since such a figure can
be represented by two equations between the co-ordi-
nates x, ¥, s only when the curve is the complete in-
tersection of two surfaces. In just this direction tend
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the modern investigations of Né&ther, Halphen, and
Valentiner. ’

Four years after the Analytisch-geometrische Unter-
suchungen of Pliicker, in the year 1832, Steiner pub-
lished his Systematische Entwicklung der Abhéngigkeit
geometrischer Gestalten. Steiner found the whole the-
ory of conic sections concentrated in the single theo-
rem (with its dualistic analogue) that a curve of the
second order is produced as the intersection of two
collinear or projective pencils, and hence the theory
of curves and surfaces of the second order was essen-
tially completed by him, so that attention could be
turned to algebraic curves and surfaces of higher or-
der. Steiner himself followed this course with good
results. This is shown by the ¢‘Steiner surface,” and
by a paper which appeared in 1848 in the Beriiner
Abkandlungen. In this the theory of the polar of a
point with respect to a curved line was treated ex-
haustively and thus a more geometric theory of plane
curves developed, which was further extended by the '
labors of Grassmann, Chasles, Jonquidres, and Cre-
mona.*

The names of Steiner and Plticker are also united in connec-
tion with a problem which in its simplest form belongs to elemen-
tary geometry, but in its generalization passes into higher fields.
Itis the Malfatti Problem.4 In 1803 Malfatti gave out the following
problem: From a right triangular prism to cut out three cylinders
which shall have the same altitude as the prism, whose volumes
shall be the greatest possible, and consequently the mass remain-

#Loria. t Wittstein, Gesckichte des Malfatti'schen Problems, 18)1.
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ing after their removal shall be a minimum. This problem he re-
duced to what is now generally known as Malfatti's problem: Ina
given triangle to inscribe three circles so that each circle shall be
tangent to two sides of the triangle and to the other two circles. He
calculates the radii x,, x,, 5 of the circles sought in terms of the
semi-perimeter s of the triangle, the radius p of the inscribed cir-
cle, the distances a,, @,, @3; b,, b,, b3 of the vertices of the tri-
angle from the center of the inscribed circle and its points of tan-
gency to the sides, and gets:

p

®1=25, (s+ay—p—ay—a,),
P

%2 =25, (s+a,—p—az—a,),

g =2+(;8 (s+ag—p—a;—a,),

without giving the calculation in full ; but he adds a simple con-
struction. Steiner also studied this problem. He gave (without
proof) a construction, showed that there are thirty-two solutions
and generalized the problem, replacing the three straight lines by
three circles. Pliicker also considered this same generalization.
But besides this Steiner studied the same problem for space: In
connection with three given conics upon a surface of the second
order to determine three others which shall each touch two of the
given conics and two of the required. This general problem re-
ceived an analytic solution from Schellbach and Cayley, and also
from Clebsch with the aid of the addition theorem of eiliptic func-
tions, while the more simple problem in the plane was attacked in
the greatest variety of ways by Gergonne, Lehmus, Crelle, Grunert,
Scheffler, Schellbach (who gave a specially elegant trigonometric
solution) and Zorer. The first perfectly satisfactory proof of Stei-
ner's construction was given by Binder.*

After Steiner came von Staudt and Chasles who
rendered excellent service in the development of pro-
* Programm Schinthal, 1868.
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jective geometry. In 1837 Michel Chasles published
his Apercu historique sur ['origine et le développement
des méthodes en géométrie, a work in which both ancient
and modern methods are employed in the derivation
of many interesting resulfs, of which several of the
most important, among them the introduction of the
cross-ratio (Chasles’s ‘‘anharmonic ratio”) and the
reciprocal and collinear relation (Chasles’s ¢‘duality”
and ‘‘homography”), are to be assigned in part to
Steiner and in part to M&bius.

Von Staudt’s Geometrie der Lage appeared in 1847,
his Bestrige sur Geometrie der Lage, 1856-1860. These
works form a marked contrast to those of Steiner and
Chasles who deal continually with metric relations
and cross-ratios, while von Staudt seeks to solve the
problem of ¢“making the geometry of position an in-
dependent science not standing in need of measure-
ment.” Starting from relations of position purely,
von Staudt develops all theorems that do not deal
immediately with the magnitude of geometric forms,
completely solving, for example, the problem of the
introduction of the imaginary into geometry. The
earlier works of Poncelet, Chasles, and others had,
to be sure, made use of complex elements but had
defined the same in a manner more or less vague and,
for example, had not separated conjugate complex
elements from each other. Von Staudt determined
the complex elements as double elements of involu-
tion-relations. Each double element is characterized
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by the sense in which, by this relation, we pass from
the one to the other. This suggestion of von Staudt’s,
however, did not become generally fruitful, and it
was reserved for later works to make it more widely
known by the extension of the originally narrow con-
ception.

In the Beitrdge von Staudt has also shown how
the cross-ratios of any four elements of a prime form
of the first class (von Staudt’s Wirfe) may be used to
derive absolute numbers from pure geometry.*

With the projective geometry is most closely con-
nected the modern descriptive geometry. The former
in its development drew its first strength from the
considerations of perspective, the latter enriches itself
later with the fruits matured by the cultivation of pro-
jective geometry.

The perspective of the Renaissancet was devel-
oped especially by French mathematicians, first by
Desargues who used co-ordinates in his pictorial rep-
resentation of objects in such a way that two axes lay
in the picture plane, while the third axis was normal
to this plane. The results of Desargues were more
important, however, for theory than for practice.
More valuable results were secured by Taylor with a
¢‘linear perspective” (17156). In this a straight line
is determined by its trace and vanishing point, a plane
by its trace and vanishing line. This method was

*Stolz, O., Vorlesungen Bber allgemeine Ayithmetik, 1885-1886.
+ Wiener.
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used by Lambert in an ingenious manner for different
constructions, so that by the middle of the eighteenth
century even space-forms in general position could be
pictured in perspective.

Out of the perspective of the eighteenth century
grew ‘‘descriptive geometry,” first in a work of Fré-
zier's, which besides practical methods contained a
special theoretical section furnishing proofs for all
cases of the graphic methods considered. Even in
the ¢¢description,” or representation, Frézier replaces
the central projection by the perpendicular parallel-
projection, ¢ which may be illustrated by falling drops
of ink.”* The picture of the plane of projection is
called the ground plane or elevation according as the
picture plane is horizontal or vertical. With the aid
of this ‘“description’ Frézier represents planes, poly-
hedra, surfaces of the second degree as well as inter-
sections and developments.

Since the time of Monge descriptive geometry has
taken rank as a distinct science. The ZLegons de géo-
métrie descriptive (1795) form the foundation-pillars of
descriptive geometry, since they introduce horizontal
and vertical planes with the ground-line and show
how to represent points and straight lines by two pro-
jections, and planes by two traces. This is followed
in the Legons by the great number of problems of in-
tersection, contact and penetration which arise from
combinations of planes with polyhedra and surfaces

* Wiener.
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of the second order. Monge’s successors, Lacroix,
Hachette, Olivier, and ]J. de la Gournerie applied
these methods to surfaces of the second order, ruled
surfaces, and the relations of curvature of curves and
surfaces.

Just at this time, when the development of descriptive geom-
etry in France had borne its first remarkable results, the technical
high schools came into existence. In the year 1794 was established
in Paris the Zcole Centrale des Travaux Publics from which in
1795 the Ecole Polytechnique was an outgrowth. Further techni-
cal schools, which in course of time attained to university rank,
were founded in Prague in 1806, in Vienna in 1815, in Berlin in
1820, in Karlsruhe in 1825, in Munich in 1827, in Dresden in 1828,
in Hanover in 1831, in Stuttgart 1832, in Ziirich in 1860, in
Braunschweig in 1862, in Darmstadt in 1869, and in Aix-la-Chapelle
in 1870. In these institutions the results of projective geometry
were used to the greatest advantage in the advancement of descrip-
tive geometry, and were set forth in the most logical manner by
Fiedler, whose text-books and manuals, in part original and in
part translations from the English, take a conspicuous place in the
literature of the science.

With the technical significance of descriptive geometry there
has been closely related for some years an artistic side, and it is
this especially which has marked an advance in works on axonom-
etry (Weisbach, 1844), relief-perspective, photogrammetry, and
theory of lighting.

The second quarter of our century marks the time
when developments in form-theory in connection with
geometric constructions have led to the discovery of
of new and important results. Stimulated on the one
side by Jacobi, on the other by Poncelet and Steiner,
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Hesse (1837-1842) by an application of the transfor-
mation of homogeneous forms treated the theory of
surfaces of the second order and constructed their
principal axes.* By him the notions of ¢polar tri-
angles” and ‘“polar tetrahedra” and of ¢‘systems of
conjugate points” were introduced as the geometric
expression of analytic relations. To these were added
the linear construction of the eighth intersection of
three surfaces of the second degree, when seven of
them are given, and also by the use of Steiner’s theo-
rems, the linear construction of a surface of the sec-
ond degree from nine given points. Clebsch, follow-
ing. the English mathematicians, Sylvester, Cayley,
and Salmon, went in his works essentially further than
Hesse. His vast contributions to the theory of in-
variants, his introduction of the notion of the defi-
ciency of a curve, his applications of the theory of
elliptic and Abelian functions to geometry and to the
study of rational and elliptic curves, secure for him a
pre-eminent place among those who have advanced
the science of extension. As an algebraic instrument
Clebsch, like Hesse, had a fondness for the theorem
upon the multiplication of determinants in its appli-
cation to bordered determinants. His workst upon
the general theory of algebraic curves and surfaces

# Néther, * Otto Hesse," Schlimilch's Zeitschrift, Bd. 20, HI. A.

t¢ Clebsch, Versuch einer Darlegung und Wiirdigung seiner wissen-
schaftlichen Leistungen von einigen seiner Freunde' (Brill, Gordan, Klein,
Liiroth, A. Mayer, N&ther, Von der Miihll) Ma¢k. Ann., Bd. 7.
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began with the determination of those points upon an
algebraic surface at which a straight line has four-
point contact, a problem also treated by Salmon but
not so thoroughly. While now the theory of surfaces
of the third order with their systems of twenty-seven
straight lines was making headway on English soil,
Clebsch undertook to render the notion of ¢defi-
ciency’’ fruitful for geometry. This notion, whose
analytic properties were not unknown to Abel, is found
first in Riemann’s Zheorie der Abél’schen Funktionen
(1857). Clebsch speaks also of the deficiency of an
algebraic curve of the nth order with 4 double points
and » points of inflexion, and determines the number
?=3%(n—1)(n—2)—d—r. To one class of plane
or gauche curves characterized by a definite value of
2 belong all those that can be made to pass over into
 one another by a rational transformation or which
possess the property that any two have a one-to-one
correspondence. Hence follows the theorem that only
those curves that possess the same 35—3 parameters
(for curves of the third order, the same one parame-
ter) can be rationally transformed into one another.
The difficult theory of gauche curves* owes its first
general results to Cayley, who obtained formulae cor-
responding to Pliicker’s equations for plane curves.
Works on gauche curves of the third and fourth orders
had already been published by M&bius, Chasles, and
Von Staudt. General observations on gauche curves

*Loria,



264 HISTORY OF MATHEMATICS.

in more recent times are found in theorems of N&ther
and Halphen.

The foundations of enumerative geometry* are
found in Chasles’s method of characteristics (1864).
Chasles determined for rational configurations of one
dimension a correspondence-formula which in the
simplest case may be stated as follows : If two ranges
of points &; and R; lie upon a straight line so that to
every point x of X there correspond in general a
points y in Rs, and again to every point y of R, there
always correspond B points x in &}, the configuration
formed from R; and R, has (a+ B) coincidences or
there are (a- B) times in which a point x coincides
with a corresponding point y. The Chasles corre-
spondence-principle was extended inductively by Cay-

ley in 1866 to point-systems of a curve of higher
~ deficiency and this extension was proved by Brill.t
Important extensions of these enumerative formulae
(correspondence-formulae), relating to general alge-
braic curves, have been given by Brill, Zeuthen, and
Hurwitz, and set forth in elegant form by the intro-
duction of the notion of deficiency. An extended
treatment of the fundamental problem of enumerative
geometry, to determine how many geometric config-
urations of given definition satisfy a sufficient number
of conditions, is contained in the Kalkél der absihien-
den Geomelrie by H. Schubert (1879).
The simplest cases of one-to-one correspondence

*Loria, t Mathem. Annalen, V1.
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or uniform representation, are furnished by two planes
superimposed one upon the other. These are the
similarity studied by Poncelet and the collineation
treated by Mébius, Magnus, and Chasles.* In both
cases to a point corresponds a point, to a straight line
a straight line. From these linear transformations
Poncelet, Pliicker, Magnus, Steiner passed to the
quadratic where they first investigated one-to-one cor-
respondences between two separate planes. The
¢¢Steiner projection” (1832) employed two planes £,
and £j together with two straight lines g; and g3 not
co-planar. If we draw through a point P; or P; of £,
or E; the straight line x; or x3 which cuts g; as well
as gg, and determines the intersection Xj or Xj, with
E3 or E,, then are P; and X3, and P; and X corre-
sponding points. In this manner to every straight
line of the one plane corresponds a conic section in
the other. In 1847 Pliicker had determined a point
upon the hyperboloid of one sheet, like fixing a point
in the plane, by the segments cut off upon the two
generators passing through the point by two fixed
generators. This was an example of a uniform rep-
resentation of a surface of the second order upon the
plane.

The one-to-one relation of an arbitrary surface of
the second order to the plane was investigated by
Chasles in 1863, and this work marks the beginning
of the proper theory of surface representation which

* Loria.
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found its further development when Clebsch and Cre-
mona independently succeeded in the representation
of surfaces of the third order. Cremona’s important
results were extended by Cayley, Clebsch, Rosanes,
and Nother, to the last of whom we owe the impor-
tant theorem that every Cremona transformation which
as such is uniform forward and backward can be
effected by the repetition of a number of quadratic
transformations. In the plane only is the aggregate
of all rational or Cremona transformations known ;
for the space of three dimensions, merely a beginning
of the development of this theory has been made.*

A specially important case of one-to-one corre-
spondence is that of a conformal representation of a
surface upon the plane, because here similarity in the
smallest parts exists between original and image. The
simplest case, the stereographic projection, was known
to Hipparchus and Ptolemy. The representation by
reciprocal radii characterized by the fact that any two
corresponding points P, and P lie upon a ray through
the fixed point O so that OP; - OPy=constant, is also
conformal. Here every sphere in space is in general
transformed into a sphere. This transformation, stud-
ied by Bellavitis 1836 and Stubbs 1843, is especially
useful in dealing with questions of mathematical phys-
ics. Sir Wm. Thomson calls it ¢‘the principle of elec-
tric images.” The. investigations upon representa-

*Klein, B., Vergleickende Betracktungen Rber neuere geometyische Forsch-
ungen, 1872.
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tions, made by Lambert and Lagrange, but more
especially those by Gauss, lead to the theory of curva-
ture.

A further branch of geometry, the differential ge-
ometry (theory of curvature of surfaces), considers in
general not first the surface in its totality but the
properties of the same in the neighborhood of an or-
dinary point of the surface, and with the aid of the
differential calculus seeks to characterize it by ana-
lytic formulae.

The first attempts to enter this domain were made
by Lagrange (1761), Euler (1766), and Meusnier(1776).
The former determined the differential equation of
minimal surfaces; the two latter discovered certain
theorems upon radii of curvature and surfaces of cen-
ters. But of fundamental importance for this rich do-
main have been the investigations of Monge, Dupin,
and especially of Gauss. In the Application de I’ana- -
lyse @ la géoméirie (1795), Monge discusses families
of surfaces (cylindrical surfaces, conical surfaces, and
surfaces of revolution,—envelopes with the new no-
tions of characteristic and edge of regression) and de-
termines the partial differential equations distinguish-
ing each. In the year 1813 appeared the Développements
de géoméirie by Dupin. It introduced the indicatrix
at a point of a surface, as well as extensions of the
theory of lines of curvature (introduced by Monge)
and of asymptotic curves.

Gauss devoted to differential geometry three trea-
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tises: the most celebrated, Disquisitiones generales circa
superficies curvas, appeared in 1827, the other two
Untersuchungen iber Gegenstinde der hoheren Geodésie
were published in 1843 and 1846. In the Disquisi-
tiones, to the preparation of which he was led by his
own astronomical and geodetic investigations,* the
spherical representation of a surface is introduced.
The one-to-one correspondence between the surface
and the sphere is established by regarding as corre-
sponding points the feet of parallel normals, where
obviously we must restrict ourselves to a portion of
the given surface, if the correspondence is to be main-
tained. Thence follows the introduction of the curvi-
linear co-ordinates of a surface, and the definition of
the measure of curvature as the reciprocal of the pro-
duct of the two radii of principal curvature at the
point under consideration. The measure of curvature
is first determined in ordinary rectangular co-ordinates
and afterwards also in curvilinear co-ordinates of the
surface. Of the latter expression it is shown that it is
not changed by any bending of the surface without
stretching or folding (that it is an invariant of curva-
ture). Here belong the consideration of geodetic
lines, the definition and a fundamental theorem upon
the total curvature (curvatura integra) of a triangle
bounded by geodetic lines. ’

The broad views set forth in the Disquisitiones of
1827 sent out fruitful suggestions in the most vari-

*Brill, A., Antrittsrede in TRbingen, 1884.
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ous directions. Jacobi determined the geodetic lines
of the general ellipsoid. With the aid of ellipﬁc co-
ordinates (the parameters of three surfaces of a sys-
tem of confocal surfaces of the second order passing
through the point to be determined) he succeeded in
integrating the partial differential equation so that the
equation of the geodetic line appeared as a relation
between two Abelian integrals. The properties of the
geodetic lines of the ellipsoid are derived with espe-
cial ease from the elegant formulae given by Liou-
ville. By Lamé the theory of curvilinear co-ordinates,
of which he had investigated a special case in 1837,
was developed in 18569 into a theory for space in his
Legons sur la théorie des coordonnées curvilignes.

The expression for the Gaussian measure of curva-
ture as a function of curvilinear co-ordinates has given
an impetus to the study of the so-called differential
invariants or differential parameters. These are cer-
tain functions of the partial derivatives of the coeffi-
cients in the expression for the square of the line-ele-
ment which in the transformation of variables behave
like the invariants of modern algebra. Here Saucé,
Jacobi, C. Neumann, and Halphen laid the founda-
tions, and a general theory has been developed by
Beltrami.* This theory, as well as the contact-trans-
formations of Lie, moves along the border line be-
tween geometry and the theory of differential equa-
tions.}

® Mem. di Bologna, VIII. t Loria.
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With problems of the mathematical theory of light are con-
nected certain investigations upon systems of rays and the prop-
erties of infinitely thin bundles of rays, as first carried on by Du-
pin, Malus, Ch. Sturm, Bertrand, Transon, and Hamilton. The
celebrated works of Kummer (1857 and 1866) perfect Hamilton’s
results upon bundles of rays and consider the number of singular-
ities of a system of rays and its focal surface. An interesting ap-
plication to the investigation of the bundles of rays between the
lens and the retina, founded on the study of the infinitely thin
bundles of normals of the ellipsoid, was given by O. Boklen.*

Non- Euclidean Geometry.— Though the respect
which century after century had paid to the Elements
of Euclid was unbounded, yet mathematical acuteness
had discovered a vulnerable point; and this pointt
forms the eleventh axiom (according to Hankel, reck-
oned by Euclid himself among the postulates) which
affirms that two straight lines intersect on that side of
a transversal on which the sum of the interior angles
is less than two right angles. Toward the end of the
last century Legendre had tried to do away with this
axiom by making its proof depend upon the others, but
his conclusions were invalid. This effort of Legendre’s
was an indication of the search now beginning after a
geometry free from contradictions, a hyper-Euclidean
geometry or pangeometry. Here also Gauss was
among the first who recognized that this axiom could
not be proved. Although from his correspondence
with Wolfgang Bolyai and Schumacher it can easily

* Kyomecker's Jourmal, Band 46. Fortschritte, 1884.
+ Loria.
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be seen that he had obtained some definite results in
this field at an early period, he was unable to decide
upon any further publication. The real pioneers in
the Non-Euclidean geometry were Lobachevski and
the two Bolyais. Reports of the investigations of
Lobachevski first appeared in the Courier of Kasan,
1829-1830, then in the transactions of the Univer-
sity of Kasan, 1835-1839, and finally as Geometrische
Untersuchungen tiber die Theorie der Parallellinien, 1840,
in Berlin. By Wolfgang Bolyai was published (1832-
1833 *) a two-volume work, Zentamen Juventutem stu-
diosam in elementa Matheseos purae, etfc. Both works
were for the mathematical world a long time as good
as non-existent till first Riemann, and then (in 1866)
R. Baltzer in his Elemente, referred to Bolyai. Almost
at the same time there followed a sudden mighty ad-
vance toward the exploration of this ¢‘new world” by
Riemann, Helmholtz, and Beltrami. It was recog-
nized that of the twelve Euclidean axiomst nine are
of essentially arithmetic character and therefore hold
for every kind of geometry ; also to every geometry is
applicable the tenth axiom upon the equality of all
right angles. The twelfth axiom (two straight lines,
or more generally two geodetic lines, include no
space) does not hold for geometry on the sphere.
The eleventh axiom (two straight lines, geodetic

*Schmidt, “‘Aus dem Leben zweler ungarischen Mathematiker,’’ Grusers
Archk., Bd. 48.

t Brill, A., Ueber das elfie Axiom des Euclid, 1883.
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lines, intersect when the sum of the interior angles is
less than two right angles) does not hold for geometry
on a pseudo-sphere, but only for that in the plane.

Riemann, in his paper ¢“Ueber die Hypothesen,
welche der Geometrie zu Grunde liegen,” * seeks to
penetrate'the subject by forming the notion of a mul-
tiply extended manifoldness; and according to these
investigations the essential characteristics of an #n-ply
extended manifoldness of constant measure of curva-
ture are the following:

1. ¢«Every point in it may be determined by =
variable magnitudes (co-ordinates). '

2. ¢The length of a line is independent of posi-
tion and direction, so that every line is measurable
by every other.

3. ¢To investigate the measure-relations in such
a manifoldness, we must for every point represent the
line-elements proceeding from it by the corresponding
differentials of the co-ordinates. This is done by virtue
of the hypothesis that the length-element of the line
is equal to the square root of a homogeneous function
of the second degree of the differentials of the co-
ordinates.”

At the same time Helmholtz{ published in the
¢¢Thatsachen, welche der Geometrie zu Grunde lie
gen,” the following postulates :

* Gittinger Abkandlungen, X111., 1868. Forischritte, 1868.
+ Fortschritte, 1868.
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1. «“A point of an z-tuple manifoldness is deter-
mined by 7 co-ordinates.

2. ¢“Between the 27 co-ordinates of a point-pair
there exists an equation, independent of the move-
ment of the latter, which is the same for all congruent
point-pairs.

3. ¢«Perfect mobility of rigid bodies is assumed.

4. «If arigid body of » dimensions revolves about
n—1 fixed points, then revolution without reversal
will bring it back to its original position.”

Here spatial geometry has satisfactory foundations
for a development free from contradictions, if it is fur-
ther assumed that space has three dimensions and is
of unlimited extent.

One of the most surprising results of modern geo-
metric investigations was the proof of the applicabil-
ity of the non-Euclidean geometry to pseudo-spheres
or surfaces of constant negative curvature.* On a
pseudo-sphere, for example, it is true that a geodetic
line (corresponding to the straight line in the plane,
the great circle on the sphere) has two separate points
at infinity; that through a point 2, to a given geodetic
line g, there are two parallel geodetic lines, of which,
however, only one branch beginning at P cuts g at in-
finity while the other branch does not meet g at all;
that the sum of the angles of a geodetic triangle is
less than two right angles. Thus we have a geometry
upon the pseudo-sphere which with the spherical ge-

* Cayley, Address to the British Association, etc,, 1883.

L ]
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ometry has a common limiting case in the ordinary
or Euclidean geometry. These three geometries have
this in common that they hold for surfaces of constant
curvature. According as the constant value of the
curvature is positive, zero, or negative, we have to do
with spherical, Euclidean, or pseudo-spherical geom-
etry.

A new presentation of the same theory is due to
F. Klein. After projective geometry had shown that
in projection or linear transformation all descriptive
properties and also some metric relations of the fig-
ures remain unaltered, the endeavor was made to find
for the metric properties an expression which should
remain invariant after a linear transformation. After
a preparatory work of Laguerre which made the ‘“no-
tion of the angle projective,” Cayley, in 1859, found the
general solution of this problem by considering ‘“every
metric property of a plane figure as contained in a
projective relation between it and a fixed conic.”
Starting from the Cayley theory, on the basis of the
consideration of measurements in space, Klein suc-
ceeded in showing that from the projective geometry
with special determination of measurements in the
plane there could be derived an elliptic, parabolic,
or hyperbolic geometry,* the same fundamentally as
the spherical, Euclidean, or pseudo-spherical geom-
etry respectively.

The need of the greatest possible generalization

* Fortschritte, 1871.

v
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and the continued perfection of the analytic apparatus
have led to the attempt to build up a geometry of =
dimensions; in this, however, only individual relations
have been considered. Lagrange* observes that ‘‘ me-
chanics may be regarded as a geometry of four dimen-
sions.” Pliicker endeavored to clothe the notion of
arbitrarily extended space in a form easily understood.
He showed that for the point, the straight line or the
sphere, the surface of the second order, as a space
element, the space chosen must have three, four, or
nine dimensions respectively. The first investigation,
giving a different conception from Pliicker’s and ¢‘ con-
sidering the element of the arbitrarily extended mani-
foldness as an analogue of the point of space,” is
foundt in H. Grassmann’s principal work, Die Wissen-
schaft der extensiven Grisse oder die lineale Ausdehnungs-
lehre (1844), which remained almost wholly unno-
ticed, as did his Geometrische Analyse (1847). Then
followed Riemann’s studies in multiply extended mani-
foldnesses in his paper Ueber die Hypothesen, etc., and
they again furnished the starting point for a series of
modern works by Veronese, H. Schubert, F. Meyer,
Segre, Castelnuovo, etc.

A Geometria situs in the broader sense was created
by Gauss, at least in name; but of it we know scarcely
more than certain experimental truths.f The Analysis

*Loria.

tF. Klein, Vergleichende Betvacktungew #ber neueve geometyische For-
s hungen, 1872.

1 Brill, A., Antrittsrede in Tibingen, 1884.
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situs, suggested by Riemann, seeks what remains fixed
after transformations consisting of the combination of
infinitesimal distortions.* This aids in the solution
of problems in the theory of functions. The contact-
transformations already considered by Jacobi have
been developed by Lie. A contact-transformation is
defined analytically by every substitution which ex-
presses the values of the co-ordinates x, y, 3, and the

partial derivatives g =2, _Z_Z‘ =g¢, in terms of quan-
tities of the same kind, %', 5, #, ', ¢. In such a
transformation contacts of two figures are replaced by
similar contacts.

Also a ‘“geometric theory of probability ” has been
created by Sylvester and Woolhouse ;1 Crofton uses
it for the theory of lines drawn at random in space.

In a history of elementary mathematics there pos-
sibly calls for attention a related field, which certainly
cannot be regarded as a branch of science, but yet
which to a certain extent reflects the development of
geometric science, the history of geometric illustrative
material.] Good diagrams or models of systems of
space-elements assist in teaching and have frequently
led to the rapid spread of new ideas. In fact in the
geometric works of Euler, Newton, and Cramer are
found numerous plates of figures. Interest in the

*F. Klein. t Fortschritte, 1868,
$ Brill, A., Ueber die Modell: lung des mathematischen Seminars der
Universitit Tibingen, 1886. Mathematisch-nat s haftliche Mitthei-

lungen von O. Btklen. 1887,
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construction of models seems to have been manifested
first in France in consequence of the example and ac-
tivity of Monge. In the year 1830 the Conservatoire
des arts et métiers in Paris possessed a whole series of
thread models of surfaces of the second degree, con.
oids and screw surfaces. A further advance was made
by Bardin (1866). He had plaster and thread mod-
els constructed for the explanation of stone-cutting,
toothed gears and other matters. His collection was
considerably enlarged by Muret. These works. of
French technologists met with little acceptance from
the mathematicians of that country, but, on the con-
trary, in England Cayley and Henrici put on exhibi-
tion in London in 1876 independently constructed
models together with other scientific apparatus of the
universities of London and Cambridge.

In Germany the construction of models experi-
enced an advance from the time when the methods of
projective geometry were introduced into descriptive
geometry. Pliicker, who in his drawings of curves of
the third order had in 1835 showed his interest in re-
lations of form, brought together in 1868 the first
large collection of models. This consisted of models
of complex surfaces of the fourth order and was con-
siderably enlarged by Klein in the same field. A
special surface of the fourth order, the wave-surface
for optical bi-axial crystals was constructed in 1840
by Magnus in Berlin, and by Soleil in Paris. In the
year 1868 appeared the first model of a surface of the
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third order with its twenty-seven straight lines, by
Chr. Wiener. In the sixties;, Kummer constructed
models of surfaces of the fourth order and of certain
focal surfaces. His pupil Schwarz likewise constructed
a series of models, among them minimal surfaces and
the surfaces of centers of the ellipsoid. At a meeting
of mathematicians in GOttingen there was made a
notable exhibition of models which stimulated further
work in this direction.

In wider circles the works suggested by A. Brill,
F. Klein, and W. Dyck in the mathematical seminar
of the Munich polytechnic school have found recogni-
tion. There appeared from 1877 to 1890 over a hun-
dred models of the most various kinds, of value not
only in mathematical teaching but also in lectures on
perspective, mechanics and mathematical physics.

In other directions also has illustrative material of
this sort been multiplied, such as surfaces of the third
order by Rodenberg, thread models of surfaces and
gauche curves of the fourth order by Rohn, H. Wiener,
and others. .

* * *

If one considers geometric science as a whole, it
cannot be denied that in its field no essential differ-
ence between modern analytic and modern synthetic
geometry any longer exists. The subject-matter and
the methods of proof in both directions have gradu-
ally taken almost the same form. Not only does the
synthetic method make use of space intuition; the
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analytic representations also are nothing less than a
clear expression of space relations. And since metric
properties of figures may be regarded as relations of
the same to a fundamental form of the second order,
to the great circle at infinity, and thus can be brought
into the aggregate of projective properties, instead of
analytic and synthetic geometry, we have only a pro-
jective geometry which takes the first place in the
science of space.*

The last decades, especially of the development of
German mathematics, have secured for the science a
leading place. In general two groups. of allied works
may be recognized.t In the treatises of the one ten-
dency ¢¢after the fashion of a Gauss or a Dirichlet,
the inquiry is concentrated upon the exactest possible
limitation of the fundamental notions” in the theory
of functions, theory of numbers, and mathematical
physics. The investigations of the other tendency,
as is to be seen in Jacobi and Clebsch, start ¢‘from a
small circle of already recognized fundamental con-
cepts and aim at the relations and consequences which
spring from them,” so as to serve modern algebra and
geometry.

On the whole, then, we may say that} ¢‘mathe-
matics have steadily advanced from the time of the
Greek geometers. The achievements of Euclid, Archi-
medes, and Apollonius are as admirable now as they

*F. Klein. t Clebsch.
3 Cayley, A., Address to the British Association, etc., 1883.
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were in their own days. Descartes’s method of co-
ordinates is a possession forever. But mathematics
have never been cultivated more zealously and dili-
gently, or with greater success, than in this century—
in the last half of it, or at the present time: the ad-
vances made have been enormous, the actual field is
boundless, the future is full of hope.”




V. TRIGONOMETRY.
A. GENERAL SURVEY.

RIGONOMETRY was developed by the ancients
for purposes of astronomy. In the first period a
number of fundamental formulae of trigonometry were
established, though not in modern form, by the Greeks
and Arabs, and employed in calculations. The second
period, which extends from the time of the gradual
rise of mathematical sciences in the earliest Middle
Ages to the middle of the seventeenth century, estab-
lishes the science of calculation with angular func-
tions and produces tables in which the sexagesima]
division is replaced by decimal fractions, which marks
a great advance for the purely numerical calculation.
During the third period, plane and spherical trigo-
nometry develop, especially polygonometry and poly-
hedrometry which are almost wholly new additions to
the general whole. Further additions are the projec-
tive formulae which have furnished a series of inter-
esting results in the closest relation to projective ge-
ometry.
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B. FIRST PERIOD.
FROM THE MOST ANCIENT TIMES TO THE ARABS.

The Papyrus of Ahmes* speaks of a quotient
called segt. After observing that the great pyramids
all possess approximately equal angles of inclination,
the assumption is rendered probable that this seg? is
identical with the cosine of the angle which the edge
of the pyramid forms with the diagonal of the square
base. This angle is usually 52°. In the Egyptian
monuments which have steeper sides, the seg? ap-
pears to be equal to the trigonometric tangent of the
angle of inclination of one of the faces to the base.

Trigonometric investigations proper appear first
among the Greeks. Hypsicles gives the division of
the circumference into three hundred sixty degrees,
which, indeed, is of Babylonian origin but was first
turned to advantage by the Greeks. After the intro-
duction of this division of the circle, sexagesimal
fractions were to be found ‘in all the astronomical cal-
culations of antiquity (with the single exception of
Heron), till finally Peurbach and Regiomontanus pre-
pared the way for the decimal reckoning. Hipparchus
was the first to complete a table of chords, but of this
we have left only the knowledge of its former exist-

*Cantor, I., p, 58.
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ence. In Heron are found actual trigonometric for-
mulae with numerical ratios for the calculation of the
areas of regular polygons and in fact all the values of

cot(z%) for n=3, 4,...11, 12 are actually computed.*
Menelaus wrote six books on the calculation of chords,
but these, like the tables of Hipparchus, are lost. On
the contrary, three books of the Spkerics of Menelaus
are known in Arabic and Hebrew translations. These
contain theorems on transversals and on the congru-
ence of spherical as well as plane triangles, and for
the spherical triangle the theorem that a + &+ ¢ << 4R,
ot B+ y>2R.

The most important work of Ptolemy consists in
the introduction of a formal spherical trigonometry
for astronomical purposes. The thirteen books of the
Great Collection which contain the Ptolemaic astron-
omy and trigonometry were translated into Arabic,
then into Latin, and in the latter by a blending of the
Arabic article a/ with a Greek word arose the word
Almagest, now generally applied to the great work of
Ptolemy. Like Hypsicles, Ptolemy also, after the
ancient Babylonian fashion, divides the circumfer-
ence into three hundred sixty degrees, but he, in ad-
dition to this, bisects every degree. As something
new we find in Ptolemy the division of the diameter
of the circle into one hundred twenty equal parts,
from which were formed after the sexagesimal fashion

# Tannery in Mém. Bord., 1881.
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two classes of subdivisions. In the later Latin trans-
lations these sixtieths of the first and second kind
were called respectively partes minutae primae and
partes minutae secundae. Hence came the later terms
‘““minutes” and ‘“seconds.” Starting from his theo-
rem upon the inscribed quadrilateral, Ptolemy calcu-
lates the chords of arcs at intervals of half a degree.
But he develops also some theorems of plane and
especially of spherical trigonometry, as for example
theorems regarding the right-angled spherical tri-
angle.

A further not unimportant advance in trigonom-
etry is to be noted in the works of the Hindus. The
division of the circumference is the same as that of
the Babylonians and Greeks; but beyond that there
is an essential deviation. The radius is not divided
sexagesimally after the Greek fashion, but the arc of
the same length as the radius is expressed in min-
utes ; thus for the Hindus » =3438 minutes. Instead
of the whole chords (s7va), the half chords (ardiajya)
are put into relation with the arc. In this relation of
the half-chord to the arc we must recognize the most
important advance of trigonometry among the Hindus.
In accordance with this notion they were therefore
familiar with what we now call the sine of an angle.
Besides this they calculated the ratios corresponding
to the versed sine and the cosine and gave them spe-
cial names, calling the versed sine wtramajya, the
cosine Aotijya. They also knew the formula sin%e
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+ cos?a=1. They did not, however, apply their
trigonometric knowledge to the solution of plane tri-
angles, but with them trigonometry was inseparably
connected with astronomical calculations.

As in the rest of mathematical science, so in trig-
onometry, were the Arabs pupils of the Hindus, and
still more of the Greeks, but not without important
devices of their own. To Al Battani it was well known
that the introduction of half chords instead of whole
chords, as these latter appear in the A/magest, and
therefore reckoning with the sine of an angle, is of
essential advantage in the applications. In addition
to the formulae found in the A/lmagest, Al Battani
gives the relation, true for the spherical triangle,
cosa=cosbcosc¢+ sinbsinccosa. In the considera-
tion of right-angled triangles in connection with

sina
and
cosa

These were reckoned for each degreee by Al

shadow-measuring, we find the quotients
cosa
sina’
Battani and arranged in a small table. Here we find

the beginnings of calculation with tangents and co-
tangents. These names, however, were introduced
much later. The origin of the term ¢¢sine” is due to
Al Battani. His work upon the motion of the stars*
was translated into Latin by Plato of Tivoli, and this
translation contains the word sinus for half chord.
In Hindu the half chord was called ardkajya or also
jiva (which was used originally only for the whole

#Cantor, I., p. 693, where this t is considered hat doubtful.
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chord); the latter word the Arabs adopted, simply
by reason of its sound, as si5a. The consonants of
this word, which in Arabic has no meaning of its
own, might be read ja/5=bosom, or incision, and
this pronunciation, which apparently was naturalized
comparatively soon by the Arabs, Plato of Tivoli
translated properly enough into sinzus. Thus was in-
troduced the first of the modern names of the trigo-
nometric functions.

Of astronomical tables there was no lack at that
sina
cosa
the ¢shadow” belonging to the angle a, calculated a

table of sines at intervals of half a degree and also a
table of tangents, which however was used only for
determining the altitude of the sun. About the same
time appeared the hakimitic table of sines which Ibn
Yunus of Cairo was required to construct by direction
of the Egyptian ruler Al Hakim.*

Among the Western Arabs the celebrated astron-
omer Jabir ibn Aflah, or Geber, wrote a complete trigo-
nometry (principally spherical) after a method of his
own, and this work, rigorous throughout in its proofs,
was published in the Latin edition of his Astronomy
by Gerhard of Cremona. This work contains a col-

was called

time. Abul Wafa, by whom the ratio

lection of formulae upon the right-angled spherical
triangle. In the plane trigonometry he does not go

*Cantor, L, p. 748.
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beyond the Almagest, and hence he here deals only
with whole chords, just as Ptolemy had taught.

C. SECOND PERIOD.

FROM THE MIDDLE AGES TO THE MIDDLE OF THE SEVEN-
TEENTH CENTURY.

Of the mathematicians outside of Germany in this
period, Vieta made a most important advance by his
introduction of the reciprocal triangle of a spherical
triangle. In Germany the science was advanced by
Regiomontanus and in its elements was presented with
such skill and thorough knowledge that-the plan laid
out by him has remained in great part up to the pres-
ent day. Peurbach had already formed the plan of
writing a trigonometry but was prevented by death.
Regiomontanus was able to carry out Peurbach’s idea
by writing a complete plane and spherical trigonom-
etry. After a brief geometric introduction Regiomon-
tanus’s trigonometry begins with the right-a{ngled tri-
angle, the formulae needed for its computation being
derived in terms of the sine alone and illustrated by
numerical examples. The theorems on the right-
angled triangle are used for the calculation of the
equilateral and isosceles triangles. Then follow the
principal cases of the oblique-angled triangle of which
the first (a from a, 5, ¢) is treated with much detail.
The second book contains the sine theorem and a
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series of problems relating to triangles. The third,
fourth, and fifth books bring in spherical trigonometry
with many resemblances to Menelaus; in particular
the angles are found from the sides. The case of the
plane triangle (a from g, 4, ¢), treated with consider
able prolixity by Regiomontanus, received a shorter
treatment from Rhaeticus, who established the for-
mula cot}a= 2, where p is the radius of the in-
scribed circle.

In this period were also published Napier’s equa-
tions, or analogies. They express a relation between
the sum or difference of two sides (angles) and the
third side (angle) and the sum or difference of the two
opposite angles (sides).

Of modern terms, as already. stated, the- word
‘¢sine” is the oldest. About the end of the sixteenth
century, or the beginning of the seventeenth, the ab-
breviation cosine for complements sinus was introduced
by the Englishman Gunter (died 1626). The terms
tangent and secant were first used by Thomas Finck
(1683); the term versed sine was used still earlier.*

By some writers of the sixteenth century, e. g., by
Apian, sinus rectus secundus was written instead of co-
sine. Rhaeticus and Vieta have perpendiculum and
basis for sine and cosine.t The natural values of the
cosine, whose logarithms were called by Kepler ¢¢anti-

* Baltzer, R., Die El te der Math tik, 188s.
+ Pfleiderer, Trigomometrie, 1802,
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logarithms,” are first found calculated in the trigo-
nometry of Copernicus as published by Rhaeticus. *

The increasing skill in practical computation, and
the need of more accurate values for astronomical
purposes, led in the sixteenth century to a strife after
the most complete trigonometric tables possible. The
preparation of these tables, inasmuch as the calcula-
tions were made without logarithms, was very tedious.
Rhaeticus alone had to employ for this purpose a
number of computers for twelve years and spent
thereby thousands of gulden.t

The first table of sines of German origin is due to
Peurbach. He put the radius equal to 600000 and
computed at intervals of 10’ (in Ptolemy » =60, with
some of the Arabs r=150). Regiomontanus com-
puted two new tables of sines, one for »==6 000 000,
the other, of which no remains are left, for r—
10 000 000. Besides these we have from Regiomon-
tanus a table of tangents for every degree, »—=100000.
The last two tables evidently show a transition from
the sexagesimal system to the decimal. A table of
sines for every minute, with »=100 000, was pre-
pared by Apian.

In this field should also be mentioned the indefat-
igable perseverance of Joachim Rhaeticus. He did
not associate the trigonometric functions with the
arcs of circles, but started with the right-angled tri-

* M. Curtze, in Schldmilck's Zeitschrift, Bd. XX.
1 Gerhardt, Geschichte der Mathematik in Deutschland 187).
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angle and used the terms perpendiculum for sine, dasis
for cosine. He calculated (partly himself and partly
by the help of others) the first table of secants; later,
tables of sines, tangents, and secants for every 10",
for radius =10 000 millions, and later still, for »r—=
1015, After his death the whole work was published
by Valentin Otho in the year 1596 in a volume of 1468
pages.*

To the calculation of natural trigonometric func-
tions Bartholomaeus Pitiscus also devoted himself.
In the second book of his Zrigonometry he sets forth
his views on computations of this kind. His tables
contain values of the sines, tangents, and secants on
the left, and of the complements of the sines, tangents
and secants (for so he designated the cosines, cotan-
gents, and cosecants) on the right. There are added
proportional parts for 1°, and even for 10”. In the
whole calculation » is assumed equal to 10%25. The
work of Pitiscus appeared at the beginning of the
seventeenth century.

The tables of the numerical values of the trigono-
metric functions had now attained a high degree of
accuracy, but their real significance and usefulness
were first shown by the introduction of logarithms.

Napier is usually regarded as the inventor of log-
arithms, although Cantor’s review of the evidencet
leaves no room for doubt that Biirgi was an indepen-
dent discoverer. His Progress Tabulen, computed be-

* Gerhardt. + Cantor, II., pp. 662 et seq.
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tween 1603 and 1611 but not published until 1620 is
really a table of antilogarithms. Biirgi’s more gen-
eral point of view should also be mentioned. He de-
sired to simplify all calculations by means of loga-
rithms while Napier used only the logarithms of the
trigonometric functions.

Biirgi was led to this method of procedure by
comparison of the two series 0, 1, 2,3,...and 1, 2,
4,8,...0r20 21 23 28 , . He observed that for
purposes of calculation it was most convenient to se-
lect 10 as the base of the second series, and from this
standpoint he computed the logarithms of ordinary
numbers, though he first decided on publication when
Napier’s renown began to spread in Germany by rea-
son of Kepler’s favorable reports. Biirgi's Geometri-
sche Progress Tabulen appeared at Prague in 1620,*
and contained the logarithms of numbers from 108 to
10° by tens. Biirgi did not use the term logarithmus,
but by reason of the way in which they were printed
he called the logarithms ¢‘red numbers,” the numbers
corresponding, ¢‘black numbers.”

Napier started with the observation that if in a
circle with two. perpendicular radii Od4, and 04,
(r=1), the sine 535; || 04 moves from O to 4, at
intervals forming an arithmetic progression, its value
decreases in geometrical progression. The segment
0S8y, Napier originally called numerus artificialis and
later the direction number or logarithimus. The first

* Gerhardt.
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publication of this new method of calculation, in which
r=107, log sin60°=10, log sin 0= oo, so that the log-
arithms increased as the sines decreased, appeared in
1614 and produced a great sensation. Henry Briggs
had studied Napier’s work thoroughly and madé the
important observation that it would be more suitable
for computation if the logarithms were allowed to in-
crease with the numbers. He proposed to put log1
=0, log10=1, and Napier gave his assent. The ta-
bles of logarithms calculated by Briggs, on the basis
of this proposed change, for the natural numbers from
1 to 20 000 and from 90 000 to 100 000 were reckoned
to 14 decimal places. The remaining gap was filled by
the Dutch bookseller Adrian Vlacq. His tables which
appeared in the year 1628 contained the logarithms of
numbers from 1 to 100000 to 10 decimal places. In
these tables, under the name of his friend De Decker,
Vlacq introduced logarithms upon the continent. As-
sisted by Vlacq and Gellibrand, Briggs computed a
table of sines to fourteen places and a table of tan-
gents and secants to ten places, at intervals of 36",
These tables appeared in 1633. Towards the close of
the seventeenth century Claas Vooght published a
table of sines, tangents, and secants with their loga-
rithms, and, what was especially remarkable, they
were engraved on copper.

Thus was produced a collection of tables for logarithmic com-
putation valuable for all time. This was extended by the intro-
duction of the addition and subtraction logarithms always named
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after Gauss, but whose inventor, according to Gauss's own testi-
mony, is Leonelli. The latter had proposed calculating a table
with fourteen decimals; Gauss thought this impracticable, and
calculated for his own use a table with five decimals. *

In the year 1875 there were in existence 553 logarithmic tables
with decimal places ranging in number from 8 to 102. Arranged
according to frequency, the 7-place tables stand at the head, then
follow those with 5-places, 6-places, 4-places, and 10-places. The
only table with 102 places is found in a work by H. M. Parkhurst
(Astronomical Tables, New York, 1871).

Investigations of the errors occurring in logarithmic tables
have been made by J. W. L. Glaisher.4 It was there shown that
every complete table had been transcribed, directly or indirectly
after a more or less careful revision, from the table published in
1628 which contains the results of Briggs's Arsthmetica logarith-
mica of 1624 for numbers from 1 to 100000 to ten places. In the
first seven places Glaisher found 171 errors of which 48 occur in
the interval from 1 to 10000. These errors, due to Vlacq, have
gradually disappeared. Of the mistakes in Vlacq, 98 still appear
in Newton (1658), 19 in Gardiner (1742), 5 in Vega (1797), 2 in
Callet (1855), 2 in Sang (1871). Of the tables tested by Glaisher,
four turned out to be free from error, viz., those of Bremiker
(1857), Schrdn (1860), Callet (1862), and Bruhns (1870). Contribu-
tions to the rapid calculation of common logarithms have been
made by Koralek (1851) and R. Hoppe (1876); the work of the
latter is based upon the theorem that every positive number may
be transformed into an infinite product.}

*Gauss, Werke, 111., p. 244. Porro in Bonc, Bull., XVIII.
+ Fortschritte, 1873.
1 Stolz, Vorlesungen #ber allgemeine Arvithmetik, 1885-1886.
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D. THIRD PERIOD.

FROM THE MIDDLE OF THE SEVENTEENTH CENTURY
TO THE PRESENT.

After Regiomontanus had laid the foundations of
plane and spherical trigonometry, and his successors
had made easier the work of computation by the com-
putation of the numerical values of the trigonomet-
ric functions and the creation of a serviceable sys-
tem of logarithms, the inner structure of the science
was ready to be improved in details during this third
period. Important innovations are especially due to
Euler, who derived the whole of spherical trigonom-
etry from a few simple theorems. Euler defined the
trigonometric functions as mere numbers, so as to be
able to substitute them for series in whose terms ap-
pear arcs of circles from which the trigonometric func-
tions proceed according to definite laws. From him
we have a number of trigonometric formulae, in part
entirely new, and in part perfected in expression.
These were made especially clear when Euler denoted
the elements of the triangle by @, 4, ¢, a, 8, . Then
such expressions as sina, tana could be introduced
where formerly special letters had been used for the
same purpose.* Lagrange and Gauss restricted them-
selves to a single theorem in the derivation of spheri-
cal trigonometry. The system of equations

*Baltzer, R., Die Elemente der Mathematik, 188s.



TRIGONOMETRY. 295

. & . b4+c . a B—y
sin 5 sin—— =sin5 cos =,
with the corresponding relations, is ordinarily ascribed

to Gauss, though the equations were first published
by Delambre in 1807 (by Mollweide 1808, by Gauss
1809).* The case of the Pothenot problem is similar:
it was discussed by Snellius 1614, by Pothenot 1692,
by Lambert 1766.4

The principal theorems of polygonometry and
polyhedrometry were established in the eighteenth
century. To Euler we owe the theorem on the area
of the orthogonal projection of a plane figure upon
another plane; to Lexell the theorem upon the pro-
jection of a polygonal line. Lagrange, Legendre,
Carnot and others stated trigonometric theorems for
polyhedra (especially the tetrahedra), Gauss for the
spherical quadrilateral.

The nineteenth century has given to trigonometry
a series of new formulae, the so-called projective for-
mulae. Besides Poncelet, Steiner, and Gudermann,
Modbius deserves special mention for having devised
a generalization of spherical trigonometry, such that
sides or angles of a triangle may exceed 180°. The im-
portant improvements which in modern times trigono-
metric developments have contributed to other mathe-
matical sciences, may be indicated in this one sentence:
their extended description would considerably en-
croach upon the province of other branches of science.

* Hammner, Lehrbuch dey cbenen und sphirischen Trigomomelrie, 1897,
+ Baltzer, R., Die El te der Mathematik, 1885.







BIOGRAPHICAL NOTES.*

Abel, Niels Henrik. Born at Finde, Norway, August 5, 1803;
died April 6, 1829. Studied in Christiania, and for a short
time in Berlin and Paris. Proved the impossibility of the
algebraic solution of the quintic equation ; elaborated the the-
ory of elliptic functions; founded the theory of Abelian func-
tions.

Abul Jud, Mohammed ibn al Lait al Shanni. Lived about r050.
Devoted much attention to geometric problems not soluble
with compasses and straight edge alone.

Abul Wafa al Buzjani. Born at Buzjan, Persia, June 10, 940;
died at Bagdad, July 1, 998. Arab astronomer. Translated
works of several Greek mathematicians; improved trigonom-
etry and computed some tables; interested in geometric con-
structions requiring a single opening of the compasses.

Adelard. About 1120. English monk who journeyed through Asia
Minor, Spain, Egypt, and Arabia. Made the first translation
of Euclid from Arabic into Latin. Translated part of Al
Khowarazmi's works.

Al Battani (Albategnius). Mohammed ibn Jabir ibn Sinan Abu
Abdallah al Battani. Born in Battan, Mesopotamia, ¢. 850;
died in Damascus, g29. Arab prince, governor of Syria; great-

*The translators feel that these notes will be of greater value to the
reader by being arranged alphabetically than, as in the original, by periods,
especially as this latter arrangement is already given in the body of the
work. They also feel that they will make the book more serviceable by
changing the notes as set forth in the original, ionally eliminating mat-
ter of little consequence, and frequently adding to the meagre information
given. They have, for this purpose, freely used such standard works as Can-
tor, Hankel, Giinther, Zeuthen, et al., and especially the valuable little Zesz-
tafeln sur Geschichte der Mathematik, Physik und Astromomic bis sum Jakre
1500, by Pelix Miiller, Leipzig, 1892. Dates are A. D., except when prefixed
by the negative sign,
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est Arab astronomer and mathematician. Improved trigonom-
etry and computed the first table of cotangents.

Alerts, Leo Battista. 1404-1472. Architect, painter, sculptor.

Abertus Magnus. Count Albrecht von Bollstidt. Born at Lau-
ingen in Bavaria, 1193 or 1205; died at Cologne, Nov. 15,
1280. Celebrated theologian, chemist, physicist, and mathe-
" matician.

.1 Biruni, Abul Rihan Mohammed ibn Ahmed. From Birun,
valley of the Indus; died 1038. Arab, but lived and travelled
in India and wrote on Hindu mathematics. Promoted spheri-
cal trigonometry.

Alcuin. Born at York, 736; died at Hersfeld, Hesse, May 19.
804. At first a teacher in the cloister school at York; then
assisted Charlemagne in his efforts to establish schools in
France.

Alkazen, Ibn al Haitam.- Born at Bassora, 950; died at Cairo,
1038. The most important Arab writer on optics.

Al Kalsadi, Abul Hasan Ali ibn Mohammed. Died 1486 or 1477.
From Andalusia or Granada. Arithmetician.

Al Karkhi, Abu Bekr Mohammed ibn al Hosain. Lived about
1010. Arab mathematician at Bagdad. Wrote on arithmetic,
algebra and geometry.

Al Khojandi, Abu Mohammed. From Khojand, in Khorassan ;
was living in g92. Arab astronomer.

Al Khowarazmi, Abu Jafar Mohammed ibn Musa. First part of
ninth century. Native of Khwarazm (Khiva). Arab mathe-
matician and astronomer. The title of his work gave the name
to algebra. Translated certain Greek works.

Al Kindi, Jacob ibn Ishak, Abu Yusuf. Born c. 813; died 873.
Arab philosopher, physician, astronomer and astrologer.

Al Kuhi, Vaijan ibn Rustam Abu Sahl. Lived about 975. Arab
astronomer and geometrician at Bagdad.

Al Nasawi, Abul Hasan Ali ibn Ahmed. Lived about 1000
From Nasa in Khorassan. Arithmetician.

Al Sagani. Ahmed ibn Mohammed al Sagani Abu Hamid al Us-
turlabi. From Sagan, Khorassan; died ggo. Bagdad astron-
omer
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Anaxagoras. Born at Clazomene, Ionia, —499; died at Lamp-
sacus, —428. Last and most famous philosopher of the Ionian
school. Taught at Athens. Teacher of Euripides and Pe-
ricles.

Apianus (Apian), Petrus. Born at Leisnig, Saxony, 1495; died in
1552. Wrote on arithmetic and trigonometry.

Apollonius of Perga, in Pamphylia. Taught at Alexandria be-
tween —250 and —200, in the reign of Ptolemy Philopator.
His eight books on conics gave him the name of *‘ the great
geometer.” Wrote numerous other works. Solved the gene-
ral quadratic with the help of conics.

Arbogast, Louis Frangois Antoine. Born at Mutzig, 1759; died
1803. Writer on calculus of derivations, series, gamma func-
tion, differential equations.

Archimedes. Born at Syracuse, —287(?); killed there by Roman
soldiers in —212. Engineer, architect, geometer, physicist.
Spent some time in Spain and Egypt. Friend of King Hiero.
Greatly developed the knowledge of mensuration of geometric
solids and of certain curvilinear areas. In physics he is known
for his work in center of gravity, levers, pulley and screw,
specific gravity, etc.

Archytas. Born at Tarentum —430; died —365. Friend of Plato,
a Pythagorean, a statesman and a general. Wrote on propor-
tion, rational and irrational numbers, tore surfaces and sec-
tions, and mechanics.

Argand, Jean Robert. Born at Geneva, 1768 ; died c. 1825. Pri-
vate life unknown. One of the inventors of the present method
of geometrically representing complex numbers (1806).

Aristotle. Born at Stageira, Macedonia, —384; died at Chalcis,
Euboea, —322. Founder of the peripatetic school of philoso-
phy; teacher of Alexander the Great. Represented unknown
quantities by letters; distinguished between geometry and
geodesy ; wrote on physics; suggested the theory of combina-
tions.

Aryabhatta. Born at Pataliputra on the Upper Ganges, 476.
Hindu mathematician. Wrote chiefly on algebra, including
quadratic equations, permutations, indeterminate equations,
and magic squares.
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August, Ernst Ferdinand. Born at Prenzlau, 1795; died 1870 as
director of the K8lnisch Realgymnasium in Berlin.

Autolykus of Pitane, Asia Minor. Lived about —330. Greek
astronomer ; author of the oldest work on spherics.

Avicenna. Abu Ali Hosain ibn Sina. Born at Charmatin, near
Bokhara, 978 ; died at Hamadam, in Persia, 1036. Arab phy-
sician and naturalist. Edited several mathematical and phys-
ical works of Aristotle, Euclid, etc. Wrote on arithmetic and
geometry.

Babbage, Charles. Born at Totnes, Dec. 26, 1792; died at Lon-
don, Oct. 18, 1871. Lucasian professor of mathematics at
Cambridge. Popularly known for his calculating machine.
Did much to raise the standard of mathematics in England.

Bachet. See Méziriac.

Bacon, Roger. Born at Ilchester, Somersetshire, 1214; died at
Oxford, June 11, 1294. Studied at Oxford and Paris; profes-
sor at Oxford ; mathematician and physicist.

Balbus. Lived about 100. Roman surveyor.

Baldi, Bernardino. Born at Urbino, 1553; died there, 1617.
Mathematician and general scholar. Contributed to the his-
tory of mathematics.

Baltzer, Heinrich Richard. Born at Meissen in 1818; died at
Giessen in 1887. Professor of mathematics at Giessen.

Barlaam, Bernard. Beginning of fourteenth century. A monk
who wrote on astronomy and geometry.

Barozzi, Francesco. Italian mathematician. 1537-1604.

Barrow, Isaac. Born at London, 1630; died at Cambridge, May
4, 1677. Professor of Greek and mathematics at Cambridge.
Scholar, mathematician, scientist, preacher. Newton was his
pupil and successor.

Beda, the Venerable. Born at Monkton, near Yarrow, Northum-
berland, in 672; died at Yarrow, May 26, 735. Wrote on chro-
nology and arithmetic.

Bellavitis, Giusto. Born at Bassano, near Padua, Nov. 22, 1803;
died Nov. 6, 1880. Known for his work in projective geom-
etry and his method of equipollences.
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Bernelinus. Lived about 1020. Pupil of Gerbert at Paris. Wrote
on arithmetic.

Bernoulli. Famous mathematical family.

Facob (often called James, by the English), born at Basel, Dec.
27, 1654 ; died there Aug. 16, 1705. Among the first to recog-
nize the value of the calculus. His De Arte Conjectands is a
classic on probabilities. Prominent in the study of curves, the
logarithmic spiral being engraved on his monument at Basel.

Fokhn (Johann), his brother; born at Basel, Aug. 7, 1667 ; died
there Jan. 1, 1748. Made the first attempt to construct an
integral and an exponential calculus. Also prominent as a
physicist,.but his abilities were chiefly as a teacher.

Nickolas (Nikolaus), his nephew ; born at Basel, Oct. 10, 1687;
died there Nov. 29, 1759. Professor at St. Petersburg, Basel,
and Padua. Contributed to the study of differential equations.

Daniel, son of John; born at Grdningen, Feb. 9, 1700 ; died at
Basel in 1782. Professor of mathematics at St. Petersburg.
His chief work was on hydrodynamics.

Jokn the younger, son of John. 1710-1790. Professor at Basel.

Bézout, Litienne. Born at Nemours in 1730; died at Paris in
1783. Algebraist, prominent in the study of symmetric func-
tions and determinants.

Bhaskara Ackarya. Born in 1114. Hindu mathematician and
astronomer. Author of the LzlawvatZ and the Vijaganita, con-
taining the elements of arithmetic and algebra. One of the
most prominent mathematicians of his time.

Biot, Jean Baptiste. Born at Paris, Apr. 21, 1774; died same
place Feb. 3, 1862. Professor of physics, mathematics, as-
tronomy. Voluminous writer.

Boéthius, Anicius Manlius Torquatus Severinus. Born at Rome,
480; executed at Pavia, 524. Founder of medieval scholasti
cism. Translated and revised many Greek writings on math-
ematics, mechanics, and physics. Wrote on arithmetic. While
in prison he composed his Consolations of Philosophy.

Bolyai: Wolfgang Bolyai de Bolya. Born at Bolya, 1775 ; died
in 1856. Friend of Gauss.

Johann Bolyai de Bolya, his son. Born at Klausenburg, 1802 ;
died at Maros-Vasarhely, 1860. One of the discoverers (see
Lobachevsky) of the so-called non-Euclidean geometry.
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Bolzano, Bernhard. 1781-1848. Contributed to the study of
series.

Bombelli, Rafaele. Italian. Born c. 1530. His algebra (1572)
summarized all then known on the subject. Contributed to
the study of the cubic.

Boncompagni, Baldassare. Wealthy Italian prince. Born at Rome.
May 10, 1821; died at same place, April 12, 1894. Publisher
of Boncompagni’s Bulletino.

Boole, George. Born at Lincoln, 1815; died at Cork, 1864. Pro-
fessor of mathematics in Queen’s College, Cork. The theory
of invariants and covariants may be said to start with his con-
tributions (1841).

Bootk, James. 1806-1878. Clergyman and writer on elliptic in-
tegrals.

Borchardt, Karl Wilhelm. Born in 1817; died at Berlin, 1880.
Professor at Berlin.

Boschi, Pietro. Born at Rome, 1833; died in 1887. Professor
at Bologna.

Bougquet, Jean Claude. Born at Morteau in 1819; died at Paris,
188s.

Bour, Jacques Edmond Emile. Born in 1832; died at Paris, 1866.
Professor in the Ecole Polytechnique.

Bradwardine, Thomas de. Born at Hardfield, near Chichester,
1290 ; died at Lambeth, Aug. 26, 1349. Professor of theolog
at Oxford and later Archbishop of Canterbury. Wrote upon
arithmetic and geometry.

Brahmagupta. Born in 598. Hindu mathematician. Contrib
uted to géometry and trigonometry.

Brasseur, Jean Baptiste. 1802-1868. Professor at Liége.

Bretschneider, Carl Anton. Born at Schneeberg, May 27, 1808,
died at Gotha, November 6, 1878.

Brianchon, Charles Julien. Born at Sévres, 1785 ; died in 1864.
Celebrated for his reciprocal (1806) to Pascal’'s mystic hexa-
gram

Briggs, Henry. Born at Warley Wood, near Halifax, Yorkshire,
Feb. 1560-1 ; died at Oxford Jan. 26, 1630-1. Savilian Pro-
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fessor of geometry at Oxford. Among the first to recognize
the value of logarithms; those with decimal base bear his
name.

Briot, Charles August Albert. Born at Sainte-Hippolyte, 1817;
died in 1882. Professor at the Sorbonne, Paris.

Brouncker, William, Lord. Born in 1620 (?) ; died at Westminster,
1684. First president of the Royal Society. Contributed to
the theory of series.

Brunellescki, Filippo. Born at Florence, 1379; died there April
16, 1446. Noted Italian architect.

Burgi, Joost (Jobst). Born at Lichtensteig, St. Gall, Switzerland,
1552 ; died at Cassel in 1632. One of the first to suggest a
system of logarithms. The first to recognize the value of mak-
ing the second member of an equation zero.

Caporali, Ettore. Born at Perugia, 1855; died at Naples, 1886.
Professor of mathematics and writer on geometry.

Cardan, Jerome (Hieronymus, Girolamo). Born at Pavia, 1501;
died at Rome, 1576. Professor of mathematics at Bologna and
Padua. Mathematician, physician, astrologer. Chief contri-
butions to algebra and theory of epicycloids.

Carnot, Lazare Nicolas Marguerite. Born at Nolay, Céte d'Or,
1753 ; died in exile at Magdeburg, 1823. Contributed to mod-
ern geometry.

Cassini, Giovanni Domenico. Born at Perinaldo, near Nice, 1625;
died at Paris, 1712. Professor of astronomy at Bologna, and
first of the family which for four generations held the post of
director of the observatory at Paris.

Castigliano, Carlo Alberto. 1847-1884. Italian engineer.

Catalan, Eugéne Charles. Born at Bruges, Belgium, May 30,
1814 ; died Feb. 14, 1894. Professor of mathematics at Paris
and Liége.

“ataldi, Pietro Antonio. Italian mathematician, born 1548; died
at Bologna, 1626. Professor of mathematics at Florence,
Perugia and Bologna. Pioneer in the use of continued frac-
tions. .

Cattaneo, Francesco. 1811-1875. Professor of physics and me-
chanics in the University of Pavia.
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Cauchy, Augustin Louis. Born at Paris, 1789; died at Sceaux,
1857. Professor of mathematics at Paris. One of the most
prominent mathematicians of his time. Contributed to the
theory of functions, determinants, differential equations, the-
ory of residues, elliptic functions, convergent series, etc.

Cavaliers, Bonaventura. Born at Milan, 1598 ; died at Bologna,
1647. Paved the way for the differential calculus by his
method of indivisibles (1629).

Cayley, Arthur. Born at Richmond, Surrey, Aug. 16, 1821; died
at Cambridge, Jan. 26, 1895. Sadlerian professor of mathe-
matics, University of Cambridge. Prolific writer on mathe-
matics.

Ceva, Giovanni. 1648-¢. 1737. Contributed to the theory of trans-
versals.

Chasles, Michel. Born at Chartres, Nov. 15, 1793 ; died at Paris,
Dec. 12, 1880. Contributed extensively to the theory of mod-
ern geometry.

Chelini, Domenico. Born 1802; died Nov. 16, 1878. Italian mathe-
matician ; contributed to analytic geometry and mechanics.

Chugquet, Nicolas. From Lyons; died about 1500. Lived in Paris
and contributed to algebra and arithmetic.

Clairaut, Alexis Claude. Born at Paris, 1713 ; died there, 1765.
Physicist, astronomer, mathematician. Prominent in the study
of curves.

Clausberg, Christlieb von. Born at Danzig, 1689; died at Copen-
hagen, 1751.

Clebsch, Rudolf Friedrich Alfred. Born January 19, 1833; died
Nov. 7, 1872. Professor of mathematics at Carlsruhe, Giessen
and Gdttingen.

Condorcet, Marie Jean Antoine Nicolas. Born at Ribemont, near
St. Quentin, Aisne, 1743 ; died at Bourg-la-Reine, 1794. Sec-
retary of the Académie des Sciences. Contributed to the the-
ory of probabilities.

Cotes, Roger. Born at Burbage, near Leicester, July ro, 1682;
died at Cambridge, June 5, 1716. Professor of astronomy at
Cambridge. His name attaches to a number of theorems in
geometry, algebra and analysis. Newton remarked, ‘*If Cotes
had lived we should have learnt something.”
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Cramer, Gabriel. Born at Geneva, 1704 ; died at Bagnols, 1752.
Added to the theory of equations and revived the study of de-
terminants (begun by Leibnitz). Wrote a treatise on curves.

Crelle, August Leopold. Born at Eichwerder (Wriezen a. d. Oder),
1780 ; died in 1855. Founder of the Journal far reine und
angewandte Mathematik (1826).

D' Alembert, Jean le Rond. Born at Paris, 1717 ; died there, 1783.
Physicist, mathematician, astronomer. Contributed to the
theory of equations.

De Beaune, Florimond. 1601-1652. Commentator on Descartes's
Geometry.

De la Gournerte, Jules Antoine René Maillard. Born in 1814;
died at Paris, 1833. Contributed to descriptive geometry.
Del Monte, Guidobaldo. 1545-1607. Wrote on mechanics and

perspective.

Democritus. Born at Abdera, Thrace, —460 ; died ¢. —370. Stud-
ied in Egypt and Persia. Wrote on the theory of numbers and
on geometry. Suggested the idea of the infinitesimal.

De Mozvre, Abraham. Born at Vitry, Champagne, 1667 ; died at
London, 1754. Contributed to the theory of complex num-
bers and of probabilities

De Morgan, Augustus. Born at Madura, Madras, June 1806 ;
died March 18, 1871. First professor of mathematics in Uni-
versity of London (1828). Celebrated teacher, but also con-
tributed to algebra and the theory of probabilities.

Desargues, Gerard. Born at Lyons, 1593 ; died in 1662. One of
the founders of modern geometry.

Descartes, René, du Perron. Born at La Haye, Touraine, 1596;
died at Stockholm, 1650. Discoverer of analytic geometry.
Contributed extensively to algebra.

Dinostratus. Lived about —335. Greek geometer. Brother of
Menaechmus. His name is connected with the quadratrix.

Diocles. Lived about —180. Greek geometer. Discovered the
cissoid which he used in solving the Delian problem.

Diophantus of Alexandria. Lived about 275. Most prominent of
Greek algebraists, contributing especially to indeterminate
equations.
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Dirichlet, Peter Gustav Lejenne. Born at Diiren, 1805 ; died at
Gottingen, 1859. Succeeded Gauss as professor at Gbttingen.
Prominent contributor to the theory of numbers.

Dodson, James. Died Nov. 23, 1757. Great grandfather of De
Morgan. Known chiefly for his extensive table of anti-log-
arithms (1742).

Donatello, 1386-1468. Italian sculptor.

Du Bois-Reymond, Paul David Gustav. Born at Berlin, Dec. 2,
1831 ; died at Freiburg, April 7, 1889. Professor of mathe-
matics in Heidelberg, Freiburg, and Ttibingen.

Duhamel, Jean Marie Constant. Born at Saint-Malo, 1797 ; died
at Paris, 1872. One of the first to write upon method in math-
ematics.

Dugpin, Frangois Pierre Charles. Born at Varzy, 1784 ; died at
Paris, 1873.

Direr, Albrecht. Born at Nuremberg, 1471; died there, 1528.
Famous artist. One of the founders of the modern theory of
curves.

Essenstein, Ferdinand Gotthold Max. Born at Berlin, 1823 ; died
there, 1852. One of the earliest workers in the field of invari
ants and covariants.

Enneper, Alfred. 1830-1885. Professor at Gottingen.

Epaphroditus. Lived about 200. Roman surveyor. Wrote on
surveying, theory of numbers, and mensuration.

Eratosthenes. Born at Cyrene, Africa, —276; died at Alexan-
dria, —194. Prominent geographer. Known for his ‘‘sieve”
for finding primes.

Euclid. Lived about —300. Taught at Alexandria in the reign
of Ptolemy Soter. The author or compiler of the most famous
text-book of Geometry ever written, the Zlements, in thirteen
books.

Eudoxus of Cnidus. —408, —355. Pupil of Archytas and Plato.
Prominent geometer, contributing especially to the theories of
proportion, similarity, and * the golden section.”

Euler, Leonhard. Born at Basel, 1707; died at St. Petersburg,

1783. One of the greatest physicists, astronomers and math-
ematicians of the 18th century. ‘‘In his voluminous . . .
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writings will be found a perfect storehouse of investigations
on every branch of algebraical and mechanical science.”—
Kelland.

Eutocius. Born at Ascalon, 480. Geometer. Wrote commen-
taries on the works of Archimedes, Apollonius, and Ptolemy.

Fagnano, Giulio Carlo, Count de. Born at Sinigaglia, 1682 ; died
in 1766. Contributed to the study of curves. Euler credits
him with the first work in elliptic functions.

Faulhaber, Johann. 1580-1635. Contributed to the theory of
series.

Fermat, Pierre de. Born at Beaumont-de-Lomagne, near Mon-
tauban, 1601 ; died at Castres, Jan. 12, 1665. One of the most
versatile mathematicians of his time ; his work on the theory
of numbers has never been equalled.

Ferrari, Ludovico. Born at Bologna, 1522 ; died in 1562. Solved
the biquadratic.

Ferro, Scipione del. Born at Bologna, ¢. 1465; died between
Oct. 29 and Nov. 16, 1526. Professor of mathematics at Bo-
logna. Investigated the geometry based on a single setting of
the compasses, and was the first to solve the special cubic
2 +pr=gq.

Feuerback, Karl Wilhelm. Born at Jena, 1800; died in 1834.

- Contributed to modern elementary geometry.

Fibonacci. See Leonardo of Pisa.

Fourier, Jean Baptiste Joseph, Baron. Born at Auxerre, 1768 ;
died at Paris, 1830. Physicist and mathematician. Contrib-
uted to the theories of equations and of series.

Frénicle. Bernard Frénicle de Bessy. 1605-1675. Friend of
Fermat.

Frézier, Amédée Frangois. Born at Chambéry, 1682; died at
Brest, 1773. One of the founders of descriptive geometry.

Friedlein, Johann Gottfried. Born at Regensburg, 1828 ; died in
1875.

Frontinus, Sextus Julius. 40-103. Roman surveyor and engineer.

Galoss, Evariste. Born at Paris, 1811 ; died there, 1832. Founder
of the theory of groups.
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Gauss, Karl Friedrich. Born at Brunswick, 1777; died at Gb&t-
tingen, 1855. The greatest mathematician of modern times.
Prominent as a physicist and astronomer. The theories of
numbers, of functions, of equations, of determinants, of com-
plex numbers, of hyperbolic geometry, are all largely indebted
to his great genius.

Geber. Jabir ben Aflah. Lived about 1085. Astronomer at Se-
ville; wrote on spherical trigonometry.

Gellibrand, Henry. 1597-1637. Professor of astronomy at Gresham
College.

Geminus. Born at Rhodes, —100; died at Rome, —40. Wrote
on astronomy and (probably) on the history of pre-Euclidean
mathematics.

Gerbert, Pope Sylvester II. Born at Auvergne, 940; died at
Rome, May 13, 1003. Celebrated teacher; elected pope in
999. Wrote upon arithmetic.

Gerhard of Cremona. From Cremona (or, according to others,
Carmona in Andalusia). Born in 1114; died at Toledo in
1187. Physician, mathematician, and astrologer. Translated
several works of the Greek and Arab mathematicians from
Arabic into Latin.

Germain, Sophie. 1776-1831. Wrote on elastic surfaces.

Girard, Albert. c. 1500-1633. Contributed to the theory of equa-
tions, general polygons, and symbolism.

Gipel, Gustav Adolf. 1812-1847. Known for his researches on
hyperelliptic functions.

Grammateus, Henricus. (German name, Heinrich Schreiber.)
Born at Erfurt, c. 1476. Arithmetician.

Grassmann, Hermann Giinther. Born at Stettin, April 15, 1809 :
died there Sept. 26, 1877. Chiefly known for his Ausdehnungs-
lehre (1844). Also wrote on arithmetic, trigonometry, and
physics.

Grebe, Ernst Wilhelm. Born near Marbach, Oberhesse, Aug. 30,
1804 ; died at Cassel, Jan. 14, 1874. Contributed to modern
elementary geometry.

Gregory, James. Born at Drumoak, Aberdeenshire, Nov. 1638 ;
died at Edinburgh, 1675. Professor of mathematics at St. An-
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drews and Edinburgh. Proved the incommensurability of = ;
contributed to the theory of series.

Grunert, Johann August. Born at Halle a. S., 1797; died in 1872.
Professor at Greifswalde, and editor of Grunert's 4rcksv.

Gua. Jean Paul de Gua de Malves. Born at Carcassonne, 1713;
died at Paris, June 2, 1785. Gave the first rigid proof of Des-
cartes's rule of signs:

Gudermann, Christoph. Born at Winneburg, March 28, 1798 ;
died at Miinster, Sept. 25, 1852. To him is largely due the
introduction of hyperbolic functions into modern analysis.

Guldin, Habakkuk (Paul). Born at St. Gall, 1577; died at Gritz,
1643. Known chiefly for his theorem on a solid of revolation,
pilfered from Pappus.

Hachette, Jean Nicolas Pierre. Born at Méziéres, 1769 ; died at
Paris, 1834. Algebraist and geometer.

Halley, Edmund. Born at Haggerston, near London, Nov. 8,
1656 ; died at Greenwich, Jan. 14, 1742. Chiefly known for
his valuable contributions to physics and astronomy.

Halphen, George Henri. Born at Rouen, Oct. 30, 1844 ; died at
Versailles in 1889. Professor in the Ecole Polytechnique at
Paris. Contributed to the theories of differential equations
and of elliptic functions.

Hamilton, Sir William Rowan. Born at Dublin, Aug. 3-4, 1805;
died there, Sept. 2, 1865. Professor of astronomy at Dublin.
Contributed extensively to the theory of light and to dynamics,
but known generally for his discovery of quaternions.

Hankel, Hermann. Born at Halle, Feb. 14, 1839 ; died at Schram-
berg, Aug. 29, 1873. Contributed chiefly to the theory of com-
plex numbers and to the history of mathematics.

Harnack, Karl Gustav Axel. Born at Dorpat, 1851; died at Dres-
den in 1888. Professor in the polytechnic school at Dresden.

Harriot, Thomas. Born at Oxford, 1560; died at Sion House,
near Isleworth, July 2, 1621. The most celebrated English
algebraist of his time.

[/eron of Alexandria. Lived about —r1x0. Celebrated surveyor
and mechanician. Contributed to mensuration.
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Hesse, Ludwig Otto. Born at Kdnigsberg, April 22, 1811; died
at Munich, Aug. 4, 1874. Contributed to the theories of curves
and of determinants.

Hipparchus. Born at Nicaea, Bithynia, —180; died at Rhodes,
—125. Celebrated astronomer. One of the earliest writers
on spherical trigonometry.

Hippias of Elis. Born c. —460. Mathematician, astronomer,
natural scientist. Discovered the quadratrix.

Hippocrates of Chios. Lived about —440. Wrote the first Greek
elementary text-book on mathematics.

Horner, William George. Born in 1786 ; died at Bath, Sept. 22,
' 1837. Chiefly known for his method of approtimating the real
roots of a numerical equation (1819).

Hrabanus Maurus. 788-856. Teacher of mathematics. Arch
bishop of Mainz.

Hudde, Johann. Born at Amsterdam, 1633; died there, 1704.
Contributed to the theories of equations and of series.

Honein ibn Ishak. Died in 873. Arab physician. Translated
several Greek scientific works.
Huygens, Christiaan, van Zuylichem. Born at the Hague, 1629 ;

died there, 1695. Famous physicist and astronomer. In math-
ematics he contributed to the study of curves.

Hyginus. Lived about 100. Roman surveyor.

Hypatia, daughter of Theon of Alexandria. 375—415. Composed
several mathematical works. See Charles Kingsley's Aygpatia.

Hypsicles of Alexandria. Lived about —1go. Wrote on solid
geometry and theory of numbers, and solved certain indeter-
minate equations.

lamblichus. Lived about 325. From Chalcis. Wrote on various
branches of mathematics.

Ibn al Banna. Abul Abbas Ahmed ibn Mohammed ibn Otman al
Azdi al Marrakushi ibn al Banna Algarnati. Born 1252 or
1257 in Morocco. West Arab algebraist; prolific writer.

Jbn Yunus, Abul Hasan Ali ibn Abi Said Abderrahman. g6o -
1008. Arab astronomer; prepared the Hakimitic Tables.
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Isidorus Hispalensis. Born at Carthagena, 570; died at Seville,
636. Bishop of Seville. His Origines contained dissertations
on mathematics.

{vory, James. Born at Dundee, 1765; died at London, Sept. 21,
1842. Chiefly known as a physicist.

Jacob:, Karl Gustav Jacob. Born at Potsdam, Dec. 10, 1804;
died at Berlin, Feb. 18, 1851. Important contributor to the
theory of elliptic and theta functions and to that of functional
determinants.

Jamin, Jules Célestin. Born in 1818; died at Paris, 1886. Pro-
fessor of physics.

Joannes de Praga (Johannes Schindel). Born at K¥niggritz, 1370
or 1375; died at Prag c. 1450. Astronomer and mathema-
tician. :

Jokannes of Seville (Johannes von Luna, Johannes Hispalensis).
Lived about 1140. A Spanish Jew; wrote on arithmetic and
algebra.

Jok von Gmiinden. Born at Gmiinden am Traunsee, between
1375 and 1385; died at Vienna, Feb. 23, 1442. Professor of
mathematics and astronomy at Vienna; the first full professor
of mathematics in a Teutonic university.

Kidstner, Abraham Gotthelf. Born at Leipzig, 1719; died at G6t-
tingen, 1800. Worote on the history of mathematics.

Kepler, Johann. Born in Wiirtemberg, near Stuttgart, 1571; died
at Regensburg, 1630. Astronomer (assistant of Tycho Brahe,
as a young man); ‘‘may be said to have constructed the edi-
fice of the universe,”"—Proctor. Prominent in introducing the
use of logarithms. Laid down the ‘‘principle of continuity”
(1604); helped to lay the foundation of the infinitesimal cal-
culus.

Khayyam, Omar. Died at Nishapur, 1123. Astronomer, geometer,
algebraist. Popularly known for his famous collection of
quatrains, the Rubaiyat.

K¥bel, Jacob. Born at Heidelberg, 1470; died at Oppenheim, in
1533. Prominent writer on arithmetic (1514; 1520).

Lacroix, Sylvestre Frangois. Born at Paris, 1765; died there,
May 25, 1843. Author of an elaborate course of mathematics.
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Laguerre, Edmond Nicolas. Born at Bar-le-Duc, April 9, 1834;
died there Aug. 14, 1886. Contributed to higher analysis.

Lagrange, Joseph Louis, Comte. Born at Turin, Jan. 25, 1736;
died at Paris, April 10, 1813. One of the foremost mathe-
maticians of his time. Contributed extensively to the calculus
of variations, theory of numbers, determinants, differential
equations, calculus of finite differences, theory of equations,
and elliptic functions. Author of the Mécanique analytique.
Also celebrated as an astronomer.

Lahire, Philippe de. Born at Paris, March 18, 1640; died there
April 21, 1718. Contributed to the study of curves and magic
squares.

Laloubére, Antoine de. Born in Languedoc, 1600; died at Tou-
louse, 1664. Contributed to the study of curves.

Lambert, Johann Heinrich. Born at Miilhausen, Upper Alsace,

1728; died at Berlin, 1777. Founder of the hyperbolic trigo-
nometry.

Lamé, Gabriel. Born at Tours, 1795 ; died at Paris, 1870. Writer
on elasticity, and orthogonal surfaces.

Landen, John. Born at Peakirk, near Peterborough, 1719; died
at Milton, 1790. A theorem of his (1755) suggested to Euler
and Lagrange their study of elliptic integrals.

Laplace, Pierre Simon, Marquis de. Born at Beaumont-en-Auge,
Normandy, March 23, 1749; died at Paris, March s, 1827.
Celebrated astronomer, physicist, and mathematician. Added
to the theories of least squares, determinants, equations, se-
ries, probabilities, and differential equations.

Legendre, Adrien Marie. Born at Toulouse, Sept. 18, 1752; died
at Paris, Jan. 10, 1833. Celebrated mathematician, contribut-
ing especially to the theory of elliptic functions, theory of
numbers, least squares, and geometry. Discovered the ‘‘law
of quadratic reciprocity,”—*‘the gem of arithmetic’ (Gauss).

Ledbnitz, Gottfried Wilhelm. Born at Leipzig, 1646; died at
Hanover in 1716. One of the broadest scholars of modern
times; equally eminent as a philosopher and mathematician.
One of the discoverers of the infinitesimal calculus, and the
inventor of its accepted symbolism.
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Leonardo of Pisa, Fibonacci (filius Bonacii, son of Bonacius).
Born at Pisa, 1180; died in 1250. Travelled extensively and
brought back to Italy a knowledge of the Hindu numerals and
the general learning of the Arabs, which he set forth in his
Liber Abact, Practica geometriae, and Flos.

L'Hospital, Guillaume Frangois Antoine de, Marquis de St.
Mesme. Born at Paris, 1661; died there 1704. One of the
first to recognise the value of the infinitesimal calculus.

Lhuilier, Simon Antoine Jean. Born at Geneva, 1750; died in
1840. Geometer.

Lzbri, Carucci dalla Sommaja, Guglielmo Brutus Icilius Timoleon.
Born at Florence, Jan. 2, 1803; died at Villa Fiesole, Sept.
28, 1869. Wrote on the history of mathematics in Italy.

Lie, Marius Sophus. Born Dec. 12, 1842; died Feb. 18, 1899.
Professor of mathematics in Christiania and Leipzig. Spe-
cially celebrated for his theory of continuous groups of trans-
formations as applied to differential equations.

Liouville, Joseph. Born at St. Omer, 1809; died in 1882. Founder
of the journal that bears his name.

Lobachevsky, Nicolai Ivanovich. Born at Makarief, 1793; died
at Kasan, Feb. 12-24, 1856. One of the founders of the so-
called non-Euclidean geometry.

Ludolph van Ceulen. See Van Ceulen.

MacCullagh, James. Born near Strabane, 1809; died at Dublin,
1846. Professor of mathematics and physics in Trinity Col-
lege, Dublin.

Maclaurin, Colin. Born at Kilmodan, Argyllshire, 1698 ; died at
York, June 14, 1746. Professor of mathematics at Edinburgh.
Contributed to the study of conics and series.

Malfatti, Giovanni Francesco Giuseppe. Born at Ala, Sept. 26,
1731; died at Ferrara, Oct. 9, 1807. Known for the geomet-
ric problem which bears his name,

Malus, Etienne Louis. Born at Paris, June 23, 1775; died there,
Feb. 24, 1812. Physicist.

Musrheroni, Lorenzo. Born at Castagneta, 1750; died at Paris,
t80o. First to elaborate the geometry of the compasses only

(1795)-
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Maurolico, Francesco. Born at Messina, Sept. 16, 1494; died
July 21, 1575. The leading geometer of his time. Wrote also
on trigonometry.

Maximus Planudes. Lived about 1330. From Nicomedia. Greek
mathematician at Constantinople. \ rote a commentary on
Diophantus; also on arithmetic.

Menaechmus. Lived about —350. Pupil of Plato. Discoverer
of the conic sections.

Menclaus of Alexandria. Lived about 100. Greek mathematician
and astronomer. Wrote on geometry and trigonometry.

Mercator, Gerhard. Born at Rupelmonde, Flanders, 1512: died
at Duisburg, 1594. Geographer,

Mercator, Nicholas. (German name Kaufmann.) Born near
Cismar, Holstein, ¢. 1620; died at Paris, 1687. Discovered
the series for log (1 4 %).

Metius, Adriaan. Born at Alkmaar, 1571 ; died at Franeker, 1635.
Suggested an approximation for m, really due to his father.

Meusnier de la Place, Jean Baptiste Marie Charles. Born at
Paris, 1754 ; died at Cassel, 1793. Contributed a theorem on
the curvature of surfaces.

M¢éziriac, Claude Gaspard Bachet de. Born at Bourg-en-Bresse,
1581; died in 1638. Known for his Prodlmes plassants, etc.
(1624) and his translation of Diophantus.

Mobius, August Ferdinand. Born at Schulpforta, Nov. 17, 1790 ;

died at Leipzig, Sept. 26, 1868. One of the leaders in modern
geometry. Author of Der Barycentrische Calctil (1827).

Mohammed ibn Musa. See Al Khowarazmi.
Mosvre. See DeMoivre.

Mollweide, Karl Brandan. Born at Wolfenbfittel, Feb. 3, 1774 ;
died at Leipzig, March 10, 1825. Wrote on astronomy and
mathematics.

Monge, Gaspard, Comte de Péluse. Born at Beaune, 1746; died
at Paris, 1818. Discoverer of descriptive geometry; contrib-
uted to the study of curves and surfaces, and to differential
equations.
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Montmort, Pierre Rémond de. Born at Paris, 1678 ; died there,
1719. Contributed to the theory of probabilities and to the
summation of series.

Moschopulus, Manuel. Lived about 1300. Byzantine mathemati-
cian. Known for his work on magic squares.

Mydorge, Claude. Born at Paris, 1585 ; died there in 1647. Author
of the first French treatise on conics.

Nagpier, John. Born at Merchiston, then a suburb of Edinburgh,
1550; died there in 1617. Inventor of logarithms. Contrib-
uted to trigonometry.

Newton, Sir Isaac. Born at Woolsthorpe, Lincolnshire, Dec. 25,
1642, O. S.; died at Kensington, March 20, 1727. Succeeded
Barrow as Lucasian professor of mathematics at Cambridge
(1669). The world’s greatest mathematical physicist. Invented
fluxional calculus (c. 1666). Contributed extensively to the
theories of series, equations, curves, and, in general, to all
branches of mathematics then known.

Nicole, Frangois. Born at Paris, 1683; died there, 1758. First
treatise on finite differences.

Nicomachus of Gerasa, Arabia. Lived 100. Wrote upon arith-
metic.

Nicomedes of Gerasa. Lived —180. Discovered the conchoid
which bears his name.

Nicolaus von Cusa. Born at Cuss on the Mosel, 1401 ; died at
Todi, Aug. 11, 1464. Theologian, physicist, astronomer, ge-
ometer.

Odo of Cluny. Born at Tours, 879; died at Cluny, 942 or 943.
Wrote on arithmetic.

Oenopides of Chios. Lived —465. Studied in Egypt. Geometer.

Olivier, Théodore. Born at Lyons, Jan. 21, 1793 ; died in same
place Aug. 5, 1853. Writer on descriptive geometry.

Oresme, Nicole. Born in Normandy, ¢. 1320; died at Lisieux,
1382. Wrote on arithmetic and geometry.

Oughtred, William. Born at Eton, 1574 ; died at Albury, 1660.
Writer on arithmetic and trigonometry.

Pacioli, Luca. Fra Luca di Borgo di Santi Sepulchri. Born at
Borgo San Sepolcro, Tuscany, ¢. 1445; died at Florence,
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¢. 1509. Taught in several Italian cities. His Summa de
Arithmetica, Geometria, etc., was the first great mathemat-
ical work published (1494).

Pappus of Alexandria. Lived about 300. Compiled a work con
taining the mathematical knowledge of his time.

Parent, Antoine. Born at Paris, 1666 ; died there in 1716. First
to refer a surface to three co-ordinate planes (1700).

Pascal, Blaise. Born at Clermont, 1623; died at Paris, 1662.
Physicist, philosopher, mathematician. Contributed to the
theory of numbers, probabilities, and geometry.

Peiyce, Charles S. Born at Cambridge, Mass., Sept. 10, 1839.
‘Writer on logic.

Pell, John. Born in Sussex, March 1, 1610; died at London, Dec.
10, 1685. Translated Rahn's algebra.

Perseus. Lived —150. Greek geometer ; studied spiric lines.

Peuerback, Georg von. Born at Peuerbach, Upper Austria, May
30, 1423 ; died at Vienna, April 8, 1461. Prominent teacher
and writer on arithmetic, trigonometry, and astronomy.

Pfayf, Johann Friedrich. Born at Stuttgart, 1765 ; died at Halle
in 1825. Astronomer and mathematician.

Pitiscus, Bartholomaeus. Born Aug. 24, 1561; died at Heidel-
berg, July 2, 1613. Wrote on trigonometry, and first used the
present decimal point (1612).

Plana, Giovanni Antonio Amedeo. Born at Voghera, Nov. 8,
1781; died at Turin, Jan. 2, 1864. Mathematical astronomer
and physicist.

Planudes. See Maximus Planudes.

Plateau, Joseph Antoine Ferdinand. Born at Brussels, Oct. 14,
1801 ; died at Ghent, Sept. 15, 1883. Professor of physics at
Ghent.

Plato. Born at Athens, —429; died in —348. Founder of the
Academy. Contributed to the philosophy of mathematics.
Plato of Tivoli. Lived 1120. Translated Al Battani's trigonom-

etry and other works.

Plicker, Johann. Born at Elberfeld, July 16, 1801 ; died at Bonn,
May 22, 1868. Professor of mathematics at Bonn and Halle.
One of the foremost geometers of the century.
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Poisson, Siméon Denis. Born at Pithiviers, Loiret, 1781 ; died
at Paris, 1840. Chiefly known as a physicist. Contributed
to the study of definite integrals and of series.

Poncelet, Jean Victor. Born at Metz, 1788 ; died at Paris, 1867.
One of the founders of projective geometry.

Pothenot, Laurent. Died at Paris in 1732. Professor of mathe-
matics in the Collége Royale de France.

Proclus. Born at Byzantium, 412; died in 485. Wrote a com-
mentary on Euclid. Studied higher plane curves.

Ptolemy (Ptolemaeus Claudius). Born at Ptolemais, 87; died at
Alexandria, 165. One of the greatest Greek astronomers.

Pythagoras. Born at Samos, —580; died at Megapontum, —501.
Studied in Egypt and the East. Founded the Pythagorean
school at Croton, Southern Italy. Beginning of the theory of
numbers. Celebrated geometrician.

Quetelet, Lambert Adolph Jacques. Born at Ghent, Feb. 22,
1796 ; died at Brussels, Feb. 7, 1874. Director of the royal
observatory of Belgium. Contributed to geometry, astronomy,
and statistics.

Ranius, Peter (Pierre de la Ramée). Born at Cuth, Picardy, 1515,
murdered at the massacre of St. Bartholomew, Paris, August
24-25, 1572. Philosopher, but also a prominent writer on
mathematics.

Recorde, Robert. Born at Tenby, Wales, 1510 ; died in prison,
at London, 1558. Professor of mathematics and rhetoric at
Oxford. Introduced the sign = for equality.

Regiomontanus. Johannes Mtiiller. Born near K8nigsberg, June
6, 1436 ; died at Rome, July 6, 1476. Mathematician, astron-
omer, geographer. Translator of Greek mathematics. Author
of first text-book of trigonometry.

Remigius of Auxerre. Died about go8. Pupil of Alcuin’s. Wrote
on arithmetic.

Rhaeticus, Georg Joachim. Born at Feldkirch, 1514; died at
Kaschau, 1576. Professor of mathematics at Wittenberg ; pu-
pil of Copernicus and editor of his works. Contributed to
trigonometry.
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Riccati, Count Jacopo Francesco. Born at Venice, 1676 ; died at
Tréves, 1754. Contributed to physics and differential equa-
tions.

Richelot, Friedrich Julius. Born at Konigsberg, Nov. 6, 1808 ;
died March 31, 1875 in same place. Wrote on elliptic and
Abelian functions.

Riemann, George Friedrich Bernhard. Born at Breselenz, Sept.
17, 1826 ; died at Selasca, July 20, 1866. Contributed to the
theory of functions and to the study of surfaces.

Riese, Adam. Born at Staffelstein, near Lichtenfels, 1492 ; died
at Annaberg, 1559. Most influential teacher of and writer on
arithmetic in the 16th century.

Roberval, Giles Persone de. Born at Roberval, 1602; died at
Paris, 1675. Professor of mathematics at Paris. Geometry
of tangents and the cycloid.

Rolle, Michel. Born at Ambert, April 22, 1652 ; died at Paris,
Nov. 8, 1719. Discovered the theorem which bears his name,
in the theory of equations.

Rudolff, Christoff. Lived in first part of the sixteenth century.
German algebraist.

Sacro-Bosco, Johannes de. Born at Holywood (Halifax), York-
shire, 1200(?); died at Paris, 1256. Professor of mathematics
and astronomy at Paris. Wrote on arithmetic and trigonom-
etry.

Saint-Venant, Adhémar Jean Claude Barré de. Born in 1797 ;
died in Venddme, 1886. Writer on elasticity and torsion.

Saint-Vincent, Gregoire de. Born at Bruges, 1584 ; died at Ghent,
1667. Known for his vain attempts at circle squaring.

Saurin, Joseph. Born at Courtaison, 1659; died at Paris, 1737.
Geometry of tangents.

Scheeffer, Ludwig. Born at Konigsberg, 1859 ; died at Munich,
1885. Writer on theory of functions.

Schindel, Johannes. See Joannes de Praga.

Schwenter, Daniel. Born at Nuremberg, 1585; died in 1636.
Professor of oriental languages and of mathematics at Altdorf.

Serenus of Antissa. Lived about 350. Geometer.
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Serret, Joseph Alfred. Born at Paris, Aug. 30, 1819; died at
Versailles, March 2, 1885. Author of well-known text-books
on algebra and the differential and integral calculus.

Sextus Julius Africanus. Lived about 220. Wrote on the his-
tory of mathematics.

Simpson, Thomas, Born at Bosworth, Aug. 20, 1710; died at
Woolwich, May 14, 1761. Author of text-books on algebra,
geometry, trigonometry, and fluxions.

Sluze, René Frangois Walter de. Born at Visé on the Maas, 1622 ;
died at Liége in 1685. Contributed to the notation of the cal-
culus, and to geometry.

Smith, Henry John Stephen. Born at Dublin, 1826; died at Ox-
ford, Feb. g, 1883. Leading English writer on theory of num-
bers.

Snell, Willebrord, van Roijen. Born at Leyden, 1591 ; died there,
1626. Physicist, astronomer, and contributor to trigonometry.

Spottiswoode, William. Born in London, Jan. 11, 1825; died
there, June 27, 1883. President of the Royal Society. Writer
on algebra and geometry.

Staudt, Karl Georg Christian von. Born at Rothenburg a. d.
Tauber, Jan. 24, 1798 ; died at Erlangen, June 1, 1867. Prom-
inent contributor to modern geometry, Geometrie der Lage.

Steiner, Jacob. Born at Utzendorf, March 18, 1796; died at
Bern, April 1, 1863. Famous geometrician.

Stevin, Simon. Born at Bruges, 1548 ; died at Leyden (or the
Hague), 1620. Physicist and arithmetician.

Stewart, Matthew. Born at Rothsay, Isle of Bute, 1717; died at
Edinburgh, 1785. Succeeded Maclaurin as professor of math-
ematics at Edinburgh. Contributed to modern elementary
geometry.

Stifel, Michael. Born at Esslingen, 1486 or 1487; died at Jena,
1567. Chiefly known for his Arithmetica integra (1544).
Sturm, Jacques Charles Frangois. Born in Geneva, 1803 ; died
in 1855. Professor in the Ecole Polytechnique at Paris.

‘*Sturm's theorem."

Sylvester, James Joseph. Born in London, Sept. 3, 1814 ; died

in same place, March 15, 1897. Savilian professor of pure
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geometry in the University of Oxford. Writer on algebra,
especially the theory of invariants and covariants.

Tabit tbn Kurra. Born at Harran in Mesopotamia, 833 ; died at
Bagdad, go2. Mathematician and astronomer. Translated
works of the Greek mathematicians, and wrote on the theory
of numbers.

Tartaglia, Nicolo. (Nicholas the Stammerer. Real name, Ni-
colo Fontana.) Born at Brescia, ¢. 1500; died at Venice, c.
1557. Physicist and arithmetician ; best known for his work
on cubic equations.

Zaylor, Brook. Born at Edmonton, 1685 ; died at London, 1731.
Physicist and mathematician. Known chiefly for his work in
series.

Thales. Born at Miletus, —640; died at Athens, —548. One of
the ‘‘seven wise men”’ of Greece ; founded the Ionian School.
Traveled in Egypt and there learned astronomy and geom-
etry. First scientific geometry in Greece.

Theaetetus of Heraclea. Lived in —3go. Pupil of Socrates.
‘Wrote on irrational numbers and on geometry.

Theodorus of Cyrene. Lived in —410. Plato's mathematical
teacher. Wrote on irrational numbers.

Theon of Alexandria. Lived in 370. Teacher at Alexandria.
Edited works of Greek mathematicians.

Theon of Smyrna Lived in 130. Platonic philosopher. Wrote
on arithmetic, geometry, mathematical history, and astronomy.

Thymaridas of Paros. Lived in —390. Pythagorean; wrote on
arithmetic and equations.

Zorricelli, Evangelista. Born at Faénza, 1608; died in 1647.
Famous physicist.

Zortolini, Barnaba. Born at Rome, Nov. 19, 1808 ; died August
24, 1874. Editor of the Annali which bear his name.

Trembley, Jean. Born at Geneva, 1749; died in 1811. Wrote
on differential equations.

T'schirnhausen, Ehrenfried Walter, Graf von. Born at Kiess-
lingswalde, 1651; died at Dresden, 1708. Founded the theory
of catacaustics.
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Ubaldi, Guido. See Del Monte.
Unger, Ephraim Solomon. Born at Coswig, 1788 ; died in 1870.

Ursinus, Benjamin. 1587—1633. Wrote on trigonometry and
computed tables.

Van Ceulen, Ludolph. Born at Hildesheim, Jan. 18 (or 28), 1540
died in Holland, Dec. 31, 1610. Known for his computations
of «.

Vandermonde, Charles Auguste. Born at Paris, in 1735; died
there, 1796. Director of the Conservatoire pour les arts et
métiers.

Van Eyck, Jan. 1385-1440. Dutch painter.

Van Schooten, Franciscus (the younger). Born in 1615; died in
1660. Editor of Descartes and Vieta.

Vi2te (Vieta), Frangois, Seigneur de la Bigoti¢re. Born at Fonte-
nay-le-Comte, 1540; died at Paris, 1603. The foremost alge-
braist of his time. Also wrote on trigonometry and geometry.

Vincent. See Saint-Vincent.

Vitruvius. Marcus Vitruvius Pollio. Lived in —15. Roman archi-
tect. Wrote upon applied mathematics.

Viviant, Vincenzo. Born at Florence, 1622 ; died there, 1703.
Pupil of Galileo and Torricelli. Contributed to elementary
geometry.

Wallace, William. Born in 1768; died in 1843. Professor of
mathematics at Edinburgh.

Wallis, John. Born at Ashford, 1616; died at Oxford, 1703. Sa-
vilian professor of geometry at Oxford. Published many
mathematical works. Suggested (1685) the modern graphic
interpretation of the imaginary.

Weierstrass, Karl Theodor Wilhelm. Born at Ostenfelde, Oct.
31, 1815 ; died at Berlin, Feb. 19, 1897. One of the ablest
mathematicians of the century.

Werner, Johann. Born at Nuremberg, 1468; died in 1528. Wrote
on mathematics, geography, and astronomy.

Widmann, Johann, von Eger. Lived in 1489. Lectured on alge-
bra at Leipzig. The originator of German algebra. Wrote
also on arithmetic and geometry.
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Witt, Jan de. Born in 1625, died in 1672. Friend and helper of
Descartes. .

Wolf, Johann Christian von. Born at Breslau, 1679; died at
Halle, 1754. Professor of mathematics and physics at Halle,
and Marburg. Text-book writer.

Woepcke, Franz. Born at Dessau, May 6, 1826 ; died -at Paris,
March 25, 1864. Studied the history of the development of
mathematical sciences among the Arabs.

Wren, Sir Christopher. Born at East Knoyle, 1632; died at Lon-
don, in 1723. Professor of astronomy at Gresham College;
Savilian professor at Oxford ; president of the Royal Society.
Known, however, entirely for his great work as an architect.
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Abscissa, 229.

Abul Wafa, 225, 286.

Academies founded, 116.

Adelard (ZEthelhard) of Bath, 74, 218.

Africanus, S. Jul,, 202,

Ahmes, 19, 31, 32, 34, 77, 78, 192, 283.

Alcuin, 41.

Al Banna, Ibn, 30, 76, 0.

Al Battani, 28s.

Alberti, 227. )

Algebra, 61, 77, 96, 107; etymology,
88; first German work, 110,

Algorism, 75.

Al Kalsadi, 30, 31, 75, 76, 89, 90, 92.

Al Karkhi, 75, 93.

Al Khojandi, 76.

Al Khowarazmi, 29, 33, 74, 75, 88, 89,
91, 217.

Al Kuhi, 217,

Alligation, 34.

Almagest, 283.

Al Nasawi, 30, 34.

Al Sagani, 217.

Amicable numbers, 3s.

Anaxagoras, 195, 213.

Angle, trisection of, 196, 197, 207, 208,
217. :

Annuities, 56, 148.

Anton, 1797%.

Apian, 108, 288, 289.

Apices, 15, 27, 37, 39

Apollonius, 8o, 152, 190, 200-209, 228,
229, 231.

Approximations in square root, 70.

Arabs, 3, 15, 20, 35, 39, 53, 74, 76, 88,
89, 191, 214, 285.

Arbitration of exchange, s5.

Arcerianus, Codex, 214, 218.

Archimedes, 6871, 78, 81-83, 190, 199,
204, 205, 208, 210, 212.

Archytas, 69, 82, 204, 207, 311.

Argand, 124, 128.

Aristophanes, 25.

Aristotle, 64, 70.

Arithmetic, 18, 24, 36, 49, 51, 64, 95.

Arithmetic, foundations of, 189; re-
quired, 43.

Arithmetical triangle, 118,

Aronhold, 146, 250.

Aryabhatta, 12, 72, 74, 315, 216.

Aryans, 12.

Associative law, 119.

Assurance, 56-60.

Astronomy, 18.

August, 246.

Ausdehnungslehre, 127.

Austrian subtraction, 28, 48.

Avicenna, 76.

Axioms, 197.

Babylonians, 9, 10, 14, 19, 24, 25, 63,
64, 190, 192, 193.

Bachet, 106, 134, 137.

Ball, W, W. R, 172.

Baltzer, 1677, 224.

Bamberger arithmetic, 51.

Banna. See Ibn al Banna.

Bardin, 277.

Barrow, 169, 238.

Bartl, 167.

Baryc:?trb:her Calciid, 129, 250.
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Baumgart, 137%.

Beaune. See DeBeaune.

Bede, 36, 37, 40.

Bellavitis, 250, 266.

Beltrami, 148, 269, 271.

Beman, 124%., 125%., 129%.

Beman and Smith, 2075.

Benedictis, 23s.

Bernecker, 109.

Bernelinus, 37, 40.

Bernoulli family, 58; Jacob, 148, 150,
182, 171, 175, 178, 179, 238,239 ; John,
152, 166, 173, 175, 178, 179, 238, 242,
243; Daniel, 166, 175.

Bertrand, 122, 153, 270.

Bessel, 237.

Betti, 165.

Beatel, 22.

Bézout, 143, 159, 160, 167.

Bhaskara, 73, 74, 85, 86, 216.

Bianchi, 147.

Bianco, 237%.

Bierens de Haan, 222%.

Binder, 257.

Binomial coefficients, 103; binomial
theorem, 118.

Biot, 242.

Boethius, 26, 27, 37, 215.

Bois-Reymond, 155, 189.

Bdklen, 167%., 270.

Bolyai, 270, 271.

Bombelli, 101, 102, 112.

Boncompagni, 75.

Bonnet, 155. e

Boole, 131, 146.

Bouniakowsky, 139.

Bouvelles, a237.

Boys, 166.

Brachistochrone, 178, 238.

Brahmagupta, 52, 216.

Brianchon, 244.

Briggs, 292.

Brill, 142%., 175%., 180%., 189, 254, 264,
276%., 278.

Bring, 165.

Brioschi, 143, 144, 146.

Brocard, 245.

Brouncker, 134.

Brune, 59. .

Brunelleschi, 227.

Burckhardt, 134, 141, 147.
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Bitrgevschulen, 23.

Biirgi, 4, 50, 98, 115, 116, 290.
Busche, 139.

Calculating machines, 48.

Calculus, differential, 168, 170, 171,
178; directional, 127; integral, 174.
178; of logic, 131; of variations,

Cantor, G., 120, 123; Cantor, M., 7.

Capelli, 165.

Cardan, 101-103, 109, 113, 113, 150, 155,
225.

Cardioid, 241.

Carnot, 174, 244, 246, 248.

Cassini's oval, 241.

Castelnuovo, 275.

Cataldi, 131.

Catenary, 241.

Cattle problem of Archimedes, 83.

Cauchy, 62, 119, 124, 125, 138, 139, 143.
153, 154, 164, 167, 168, 174, 181, 188.
189.

Caustics, 238.

Cavalieri, 168, 173, 224, 229, 234, 235.
237. .

Cayley, 126#., 129%., 131, 143, 146, 168,
178, 253, 257, 263, 264, 266, 274, 277.

Ceulen, 222.

Ceva, 244.

Chain rule, 53, 55. .

Chance. See Probabilities.

Chapple, 244.

Characteristics, Chasles’s method of,
264.

Chasles, 290m., 246, 249, 256-258, 263
265.

Chessboard problem, 13s.

Chinese, 8, 14, 19, 28, 74, 87, 314, 216.

Christoffel, 147.

Chuquet, 47, 95.

Church schools, 3, 36, 37, 94.

Circle, division of, 24 ; squaring, 19¢,
197, 207, 215, 231.

Cissoid, 211,

Cistern problems, 34.

Clairaut, 117, 242,

Clausberg, 5s.

Clavius, 111.

Clebsch, 146, 147, 176, 177, 250, 251%.,
257, 262, 266, 279.
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Cloisterschools. See Church schools,

Codex Arcerianus, 214.

Coefficients and roots, 115, 156.

Cohen, 172%.

Cole, 162%.

Combinations, 7o, 74, 150, 151.

Commercial arithmetic, 22, 51, 60.

Commutative law, 119.

Comp , single opening, 225.

Complementary division, 38.

Complex numbers, 73, 101, 123, 126,
182, Complex variable. See Func-
tions, theory of.

Complexes, 254.

Compound interest, 53.

Computus, 37, 39.

Conchoid, 211.

Condorcet, 149.

Conics, 81, 202, 204208, 228, 230, 239,
256. :

Congruences, theory of, 131.

Conon, 2r0.

Conrad, H., 109.

Conrad of Megenberg, 219.

Contact transformations, 178, 269, 276.

Continued fractions, 131-133, 168,

Convergency, 152-155, 189. See Se-
ries.

Codrdinates, Cartesian, 231; curvi-
linear, 268, 269; elliptic, 269.

Copernicus, 289.

Correspondence, one-to-one, 251, 264,
266, 268.

Cosine, 288.

Coss, 96-99, 107, 109, 1II.

Cotes, 174, 239, 241, 244.

Counting, 6.

Cousin, 227.

Covariants, 146. See also Forms, In-
variants.

Cramer, 132. 167, 240; paradox, 240.

Crelle, 141, 245, 257.

Cremona, 256, 266.

Crofton, 276.

Cross ratio, 258, 259.

Cube, duplication of, 82, 104, 204, 207;
multiplication of, 207, 211.

Culvasutras, 72.

Cuneiform inscriptions, 9.

Cunynghame, 166.

Curtze, 2892,
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Curvature, measure of, 268.

Curves, classification of, 233, 239, 246;
deficiency of, 262, 263; gauche (of
double curvature), 243, 255, 263;
with higher singularities, 233.

Cusa, 237.

Cycloid, 178, 237, 238.

d, symbol of differentiation, 170-172;

8, symbol of differentiation, 180,

D’Alembert, 175, 180.

Dante, 94.

DeBeaune, 156.

Decimal fractions, 50.

Decker, 292.

Dedekind, 120-122, 126, 127, 189.

Defective numbers, 35.

Deficiency of curves, 263, 263.

Definite integrals, 174.

Degrees (circle), 24.

De Lagny, 157.

De la Gournerie, 261.

Delambre, 295.

De I'Hospital, 173, 178, 179.

Delian problem, 82, 104, 204, 207.

Democritus, 213.

De Moivre, 124, 1532, 160.

De Morgan, 143, 155.

Desargues, 205, 237, 242, 259.

Descartes, 4, 108, 117, 119, 124, 136,
140, 156, 191, 228, 230-233, 238.

Descriptive geometry, 247, 259, 260.

Determinants, 133, 144, 145, 167, 168,
262. .

DeWitt, 57, 148.

Dialytic method, 144, 145.

Diametral numbers, 208.

Differential calculus, 168, 170, 171, 178;
equations, 174-178, 269; geometry,
267.

Dimensions, ., 275.

Dini, 155, 189.

Dinostratus, 197, 210,

Diocles, ar1.

Diophantus, 65, 70, 77, 81, 84, 85, 9o,
93, 133, I34.

Dirichlet, 62, 125, 126, 133, 139, 140,
183, 174, 177, 181, 189, 279.

Discount, 54.

Discriminant, 145.

Distributive law, 119, 130.
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Divani numerals, 15.

Divisibility tests, 35.

Division, 38, 42, 44, 48, 49.

Dodson, 58.

Donatello, 227.

Duality, 249.

DuBois-Reymond, 155, 189.

Duhamel, 155.

Duodecimal fractions, 19.

Dupin, 267, 270.

Duplication of the cube, 82, 104, 204,
207.

Diirer, 221, 224-227.

Dyck, 278.

e, irrationality of, 133.

Easter, 41.

Ecole polytechnique, 261.

Eccentricity, 224.

Egyptians, 8, 10, 18, 24, 31, 35, 63, 77,
190, 192, 282.

Eisenstein, 126, 127, 138.

Elimination, theory of, 142, 143.

Ellipse, 81, 205.

Ellipsoid, 242.

Elliptic functions. See Functions.

Elliptic integrals, classed, 183, 186,
187.

Ellis, 131,

Enneper, 181%.

Enumerative geometry, 264.

Envelopes, 242.

Equations, approximate roots, 156,
166; Abelian, 163; cubic, 81, 82, 92, 93,
111-113, 155; cyclotomic, 160-163,
207; differential, 174-178; funda-
mental theorem, 163; higher, g2,
115, 155-160, 164-166; indeterminate,
83, 84, 86, 93, 135, 137, 139; linear,
77, 78, 87, 90; limits of roots, 156,
166; Diophantine, 93, 135, 137; quad-
ratic, 79-81, 85, 91, 109, 155; quartic,
111-113 ; quintic, 165; mechanical
solutions, 166; modular, 164; nega-
tive roots, 234.

Equipolent, g6.

Eratosthenes, 141, 190, 208.

Erchinger, 162.

Eschenbach, 151.

Euclid, 35, 65-69, 79, 80, 100, 119, 133,

" 190, 195, 197-199, 212, 213,

-z

HISTORY OF MATHEMATICS.

Eudoxus, 79, 199, 204, 210, 212, 223.

Euler, 58, 62, 118, 124, 132, 135 136
138, 140, 143, 152-154, 158, 160, 173,
175, 179, 180-182, 240, 244, 247, 167,
294, 295.

Evolutes, 238, 242.

Exchange, 52, 55.

Exhaustions, 199, 225.

Exponents. See Symbols.

Eyck, 226.

Eycke, 222.

Fagnano, 180, 181.

Farr, 59.

Faulhaber, g6.

Felkel, 141.

Fermat, 57, 118, 134, 135, 137, 140, * "
168, 173, 229, 234.

Ferrari, 112, 155, 225.

Ferro, 112.

Feuerbach, 245.

Fibonacci. See Leonardo.

Finck, 288.

Finger reckoning, 25, 36, 43.

Fischer, 59.

Fluxions, 171, 173.

Forms, theory of, 131, 142-147.

Fourier, 153.

Fourth dimension, 274.

Fractional exponents, 102.

Fractions, 31, 40, 49; continued, 131-
133, 168; sexagesimal, 282-284; duo-
decimal, 19.

Frangais, 125.

Frenicle, 106.

Frézier, 260.

Frobenius, 177, 178, 189.

Fuchs, 177, 178, 181,

Functional determinants, 168.

Functions, Abelian, 180, 186, 188, 189 ;
elliptic, 165, 180-182; periodicity of,
184 ; symmetric, 142, 143 ; theory of,
177, 180, 181, 188; theta, 182, 188, 189

Fundamental laws of number, 119,
131, 189.

Galileo, 237, 241.

Galois, 164.

Gauss, 4, 124-128, 133, 135%., 136-140,
1432, 143, 145, 149, I50, 153, 154, 156
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160-163, 167, 174, 181, 188, 207, 245,
267, 270, 275, 379, 294, 295.

Geber, 286,

Gellibrand, 293.

Geminus, 211.

Genocchi, 139.

Geometric

dal

, 78, 103;

276.

Geometry, 66, 190, 314; analytic, 191,
205, 230, 232, 246; descriptive; 247,
259, 260; differential, 267; enumera-
tive, 264; metrical, 190, 192, 193;
projective, 191, 246, 247, 258; non-
Euclidean, 270; of position, 190, 246,
248, 258; of space, 211, 242; three
classes of, 274.

Gerbert, 15, 37, 40, 61, 218,

Gergonne, 249, 257.

Gerhard of Cremona, 40, 286.

Gerhardt, 47.

German algebra, 96, 107; universi-
ties, 95.

Giesing, 106%.

. Girard, 124.

Girls’ schools, 21.

Gizeh, 9.

Glaisher, 142.

Gmunden, 95.

Gnomon, 66, 92, 195, 318.

Goepel, 188.

Golden rule, 51.

Golden section, 195, 222, 223.

Gordan, 144, 146, 147.

Gournerie, 261.

Goursat, 178.

Gow, 7%.

Grammateus, 45, 49, 98, 99, 108, 109.

Grassmann, 127-129, 131, 256, 275.

Graunt, 57.

Grebe point, 245.

Greek fractions, 32.

Greeks, 2, 8, 10, 14, 19, 20, 25, 64, 77,
190, 193, 282.

Gregory, 15I.

Groups, theory of, 164, 177; point, 240

Grube, 23.

Grunert, 128, 257.

Gubar numerals, 16, 17, 31.

Gudermann, 183.

Guilds, 56.

Guldin, 213, 224, 234.
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Gunter, 288.
Giinther, 16%., 107%., 133, 168, a20%

Haan, 222,

Hachette, 261.

Hahn, 48.

Halley, 57, 58, 166, 203, 204.

Halphen, 147, 253, 256, 264, 269.

Hamilton, 127, 270.

Hammer, 295».

Hankel, 6#., 124, 247%.

Harmonic means, 78, 79.

Harpedonaptae, 193, 194.

Harriot, 101, 117, 156.

Hebrews, 10.

Heine, 120, 123, 133, 189.

Helix, 211, 243.

Helmbholtz, 271, 272,

Henrici, 277.

Heptagon, 226.

Hermite, 133, 146, 147, 165.

Herodotus, 24.

Herodianus, 11.

Heron, 64, 70, 78, 81, 84, 201, 212, 283.

Hess, 245.

Hesse, 143-145, 164, 168, 176, 244, 250,
262

Hessel, 245.

Heteromecic numbers, 67.

Hexagram, mystic, 237, 244.

Heyn, s59.

Hieratic symbols, g.

Hilbert, 147, 148.

Hindenburg, 132, 150.

Hindu algebra, 84; arithmetic, 34, 71,
73; fracti 33; 8 try, a14;
mathematics, 2, 12 following.

Hipparchus, 213, 266. 282, 283.

Hippias, 196, 210,

Hippocrates, 65, 88, 197, 204, 313.

Hdlder, 189.

Homology, 249.

Hoppe, 167, 173%., 245.

Hospital, 173, 178, 179.

Horner, 166.

Hudde, 108, 148, 156.

Hugel, 107.

Hurwitz, 264.

Huygens, 131, 148, 222, 238, 242.

" Hyperbola, 81, 20s.

Hyperboloid, 242.
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Hyperdeterminants, 146.
Hyperelliptic integrals, 18;.
Hypergeometric series, 153.
Hypsicles, 84, 200, 212.

#tor V=1, 124.

Iamblichus, 136.

Ibn al Banna, 30, 76, 9o,

Ibn Kurra, 136, 217.

Icosahedron theory, 166.

Ideal numbers, 126.

Imaginaries. See Complex numbers.

Incommensurable quantities, 69.

Indeterminate equations. See Equa-
tions.

Indivisibles, 234, 236.

Infinite, 173. See Series.

Infinitesimals, 169, 179, 173, 174.

Insertions, 208, 211.

Insurance, 56-58.

Integral calculus, 174, 178.

Interest, 54.

Invariants, 145-148, 263, 274.

Involutes, 238, 241.

Involutions, 252.

Irrational numbers, 68, 69, 100, 119,
122, 123, 133, 189.

Irreducible case of cubics, 112.

Isidorus, 36.

Isoperimetric problems, 179, 200.

Italian algebra, go.

Jacobi, 62, 138, 139, 143, 144, 165, 168,
174-177, 181-187, 269, 276, 279.

Johann von Gmunden, 93.

Jonquilres, 256.

Jordan, 16s.

Kalsadi. See Al Kalsadi.

Karup, 56, 59.

Kistner, 48,

Kepler, 4, 50, 61, 169, 173, 191, 222-224,
245, 288,

Khayyam, 75, 89, 92, 93.

Khojandi, 76.

Khowarazmi. See Al Khowarazmi.

Klein, 147, 165, 177, 178, 207%., 254, 274,
277, 278.

Knilling, 23.

Kdnigsberger, 180.

Kossak, 120m.

HISTORY OF MATHEMATICS.

Krafft, 135.

Kronecker, 139, 165.

Kriiger, 141.

Krumbiegel and Amthor, 83.
Kummer, 126, 138, 139#., 155, 270, 278.
Kurra, Tabit ibn, 136, 217.

Lacroix, 242, 261.

Lagny, De, 157.

Lagrange, 62, 136, 138, 143, 151, 150.
160, 166, 167, 173, 175, 176, 179, 180,
182, 239, 267, 204, 295.

Laguerre, 274.

Lahire, 106, 249.

Lalanne, 167.

Laloubere, 158, )

Lambert, 124, 133, 141, 260, 267, 295.

Lamé, 240, 269.

Landen, 180, 182, 244.

Lansberg, 249.

Laplace, 150, 151, 167, 175.

Latin schools, 21, 43.

Least squares, 149.

Lebesgue, 139.

Legendre, 133, 136, 138-140, 149, 166,
174, 180-184, 187, 270, 295.

Lehmus, 257.

Leibnite, 4, 48, 54, 58, 62, 117, 150-152.
156, 167, 170-173, 178, 229, 239, 242.

Lemniscate, 241.

Lencker, 227.

Leonardo da Vinci, 225; of Pisa (Fi-
bonacci), 40, 41, 45, 95, 101, 107, 10G.
111, 218,

Leseur, 158.

Lessing, 83.

Letters used for quantities, 64.

Lexell, 295.

L’Hospital, 173, 178, 170.

Lhuilier, 244.

Lie, 147, 177, 269, 276.

Lieber, 245%.

Light, theory of, 270.

Limagon, 241.

Limits of roots, 156, 160, 166.

Lindemann, 133, 189, 207.

Liouville, 139, 181, 269.

Lipschitz, 147.

Lituus, 241.

Lobachevsky, 271.

L.oci, 209, 210, 232.
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Logarithmic series, 151; curve, 241.
Logarithms, 290,

Logic, calculus of, 131.

Logistic, 64.

Loria, 240%.

l.oxodrome, 243.

Luca Pacioli. See Pacioli.

Lunes of Hippocrates, 197.

Liiroth, 168,

Maclaurin, 153, 156, 174, 180, 238, 239.
Macrobius, 36.

Magic squares, 54, 105-107.

Magnus, 265, 277.

Majer, 210%.

Malfatti, 159, 256.

Malus, 270.

Marie, 2307.

Marre, 965.

Mathematica, 64.

Matthiessen, 77#., 87%., 108,
Maxima, 169, 179, 180, 203.
Mean-value theorems, 189.

Means, geometric and harmonic, 78,

79.
Mehmke, 167,
Meister, 244.

Menaechmus, 82, 204-207.

Menelaus, 283.

Menbher, 111,

Mercator, 151.

Merchants’ rule, s1.

Merriman, 1497.

Method, 23.

Meusnier, 243, 267.

Meyer, F., 2375; W. F., 147; -Hirsch,
143.

Méziriac, 106, 134, 137.

Middle Ages, 3, 20, 44, 51, 56, 106, 151.

Minima, 169, 179, 180, 203.

Minus. See Symbols.

Mdbius, 128, 129, 133, 244, 249, 250-252,
258, 263, 265, 295.

Models, geometric, 276.

Mohammedans, 3. See Arabs.

Moivre, 124, 152, 160.

Mollweide, 106.

Mommsen, 11.

Monge, 176, 178, 247, 248, 267, 277.

Monks. See Church schools.

Montucla, 692. .
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Morgan, 59.

Mortality tables, 57, 148.
Moschopulus, 106.

Muir, 167#.

Miiller, 47s.
Multiplication, 45, 46.
Muret, 277.

Mystic hexagram, 237, 244.
Mysticism. See Numbers.

Nachreiner, 168.

Napier, 47, 173, 288, 290.

Nasawi, 30, 34.

Negative numbers and roots, 70, 72,
80, 91, 101, 109, 1X9.

Neo-Platonists, 68; -Pythagoreans,
68.

Netto, 162%.

Neumann, C., 269; K., 57.

Newton, 4, 62, 117-119, 152, 156, 166,
170-175, 178, 234, 239.

New Zealanders, 7.

Nicomachus, 78.

Nicomedes, 210.

Nines, casting out, 35, 46, 76.

Noether, 144., 165, 180%:., 189, 253,
256, 264, 266.

Non-Euclidean geometry, 270.

Normal schools, 23.

Numbers, amicable, 136; classes of,
67; concept of, 118, 120; ideal, 126;
irrational, 68, 69, 100, 119, 122, 123,
133, 189; mysticism of, 37, 106; na-
ture of, 118, 120; negative, 70, 101,
109; perfect, 35, 68; polygonal, 71;
prime, 67, 68, 136, 141, 161, 162; py-
ramidal, 71; plane and solid, 66;
systems of, 6; theory of, 133-140.

Numerals, 6.

Nunez, 111, 248.

Nuremberg, 21.

0Oddo, 39.

Oekinghaus, 167.

Oenopides, 195.

Olivier, 261.

Omar Khayyam, 75, 89, 92, 93

One-to-one correspondence, 251, 264,
266, 268.

Ordinate, 229,
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Oresme, 95, 102, 229,
Osculations, 239.
Oughtred, 117, 156,

=, nature of, 133, 207; values of, 192,
193, 199, 201, 215218, 222.

Pacioli, 42, 4547, 52, 95, 96, 101.

Page numbers, 16.

Pappus, 65, 179, 203, 203, 208, 209, 212,

234

Parabola, 81; area, 68; name, 205.

Paraboloid, 242.

Parallel postulate, 201, 270.

Parameter, 203.

Parent, 242, 247.

Partition of perigon, 160-162.

Partnership, s4.

Pascal, 48, 57, 118, 148, 150, 169, 173,
174, 234, 236-238.

Pascal’s triangle, 118, 150.

Pauker, 155, 161.

Peirce, 131,

Peletier, 111.

Pencils, 242.

Pepin, 139.

Perfect numbers, 33. 68,

Periodicity of functions, 184.

Permutations, 74.

Perspective, 226, 227, 259.

Pessl, 107.

Pestalozzi, 23.

Petersen, 139.

Petty, 57.

Peuerbach, 3, 42, 45, 108, 289,

Pfaff, 151, 153, 175, 176.

Philolaus, 78.

Phoeanicians, 8, 10

Piazsi, 149.

Pincherle, 189.

Pitiscus, 50%., 2g0.

Pitot, 243.

Plane numbers, 66.

Plato, 67, 82, 197, 207; of Tivoli, 285.

Platonic bodies, 212.

Pliny, 26.

Pliicker, 144, 289, 249-252, 254, 256, 257,
263, 275, 277

Plicker’s equations, 253.

Plus. See Symbols.

Pottius, 141.
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Poincaré, 165, 177.

Poinsot, 245.

Point groups, 240.

Poisson, 143, 173.

Polar, 249, 256.

Pole, 249.

Political arithmetic, 6.

Polygons, star, 218, 219, 324.

Polytechnic schools, 261.

Poncelet, 246, 248, 249, 252, 258, 265.

Position arithmetic, 17.

Pothenot, 295.

Power series, 103.

Powers of binomial, 118.

Prime numbers, 67, 68, 136, 141, 161,
162.

Pringsheim, 154%., 155, 189.

Prismatoid, 246.

Probabilities, 148, 149, 276.

Proclus, 219.

Projection, 213, 214. See Geometry.

Proportion, 79, 109.

Ptolemy, 201, 214, 266, 283.

Puzzles, 54.

Pythagoras, 68, 179, 190, 194, 195, 2I4.

Pythagoreans, 35, 66, 67, 78, 136, 194,
195, 198.

Quadratic equations. See Equations.

Quadratic reciprocity, 137, 138; re-
mainders, 76.

Quadratrix, 196, 241.

Quadrature of circle. See Circle.

Quadrivium, 94.

Quaternions, 127, 129.

Quetelet, 59.

Raabe, 155.

Radicals, 100.

Rahn, g6m.

Ramus, g8, 111, 133.

Raphson, 166.

Realschulen, 23.

Reciprocity, quadratic, 137, 138; Her
mite’'s law of, 146.

Reciprocal polars, 249.

Reckoning schools, 4.

Redundant numbers, 35.

Rees, 55.

Regeldetri, 34, 51.
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Regiomontanus, 3, 43, 107, 108, 219,
287, 389» 294.

Regulae, various, 34, 41, 51, 52, 54, 90,
115,

Regular polygons, 161, 162, 221, 223,
225, 226, 237, 245; solids, ar2.

Reiff, 151%., 178#.

Reinaud, 75.

Resolvents, 159,

Resultant, 143-145.

Reuschle, 142, 167.

Reymers, 96, 98, 107, 108, 118,

Rhabda, 25.

Rhaeticus, 288.

Riccati, 175.

Riemann, 62, 153, 154., 181, 188, 189,
271, 273, 275, 276.

Riese, 97, 99, 106, 110, 113, 114, 120.

Right angle, construction of, 219.

Roberval, 169, 173, 229, 234, 236, 238.

Rodenberg, 278.

Rohn, 278.

Rolle, 158.
Roman fractions, 33; numerals, 11,
36, 37; mathematics, 2, 8, 19, 214.
Roots, and coefficients, 115, 156; cube,
73, 108; negative, 234; real and im-
aginary, 124, see also Numbers,
complex; square, 69, 70, 73, 103.
See also Equations.

Rope stretchers, 193; stretching, 215,

Roriczer, 220.

Rosanes, 266.

Rosenhain, 188,

Rdsler, 120%.

Roth, g6, 106.

Rothe, 132, 151.

Rudel, 245.

Rudio, 222%.

Rudolff, 4, 50, 53, 97-100, 109-111, 113~
115.

Ruffini, 163.

Rule of three, 34, 51. See Regulae.

, symbol of integration, 170, 172.
Saint-Vincent, 151,
Salignac, 111,
Salmon} 143, 263.
Sand-reckoner, 71.
Sanskrit, 12, 13.
Saucé, 269.

Saurin, 244.

Scalar, 130,

Scheeffer, 189.

Scheffler, 59, 127, 180, 245, 257.

Schellbach, 257.

Schering, 139.

Scheubel, 98, 1x1.

Schlegel, 127%., 245.

Schlesinger, 174%.

Schooten, Van, 136, 141, 156, 243.

Schottky, 189.

Schrdder, 131.

Schubert, 246, 264, 275.

Schwarz, 178, 278.

Schwenter, 131, 226.

Scipione del Ferro, 112.

Scott, 2407,

Secant, 288.

Seelhoff, 136%., 140%.

Segre, 275.

Seidel, 154.

Semitic, 9.

Seqt, 282.

Series, 34, 67, 71, 74, 76, 108, 151-154,
189.

Serret, 165, 246%.

Servois, 249.

Sexagesimal system, 24, 25, 34, 64, 70,

Sieve of Eratosthenes, 67.

Signs. See Symbols.

Simpson, 166.

Sine, name, 285.

Skew determinants, 168.

Smith, D. E., 178#. See Beman and
Smith. H. J. S., 253.

Snellius, 222, 243, 295.

Soleil, 277.

Solid numbers, 66.

Sonnenburg, 223%.

Spain, 3.

Spirals, 241; of Archimedes, a10.

Squares, least, 149.

Squaring circle. See Circle.

Stahl, 18g.

Star polygons, 218, 219, 224.

Steiner, 225, 246, 249, 251, 256-258, 265.

Stereographic projection, 266.

Stereometry, 211, 224.

Stern, 133, 139.

Stevin, 50, 228.
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Stewart, 244.

Stifel, 4, 49, 52, 53, 97, 99-105, 109-111,
113, 115, 118, 220, 221, 224.

Stokes, 154.

Stoll, 246.

Stolz, 120%.

Stringham, 245.

Stubbs, 266.

Sturm, 48, 270.

Substitutions, groups, 164, 165.

Sun tse, 87.

Surfaces, families of, 267; models of,
a277; of negative curvature, 273:
second order, 213, 262; third order,
263 ; skew, 255; Steiner, 256; ruled,
255.

Surveying, 18, 71.

Suter, g4=. .

Swan pan, 28.

Sylow, 165.

Sylvester, 143-147, 276.

Sylvester 11., Pope, 15.

symbo"v 47 63v 65- 71, 751 881 89- 95~
97, 99, 102, 108, 109, 117, 170, 171, 183,
197.

Symmedians, 245.

Sy! ic deter
tions, 142, 143.

168; func-

Tabit ibn Kurra, 136, 217.

Tables, astronomical, 286; chords,
282; factor, 141; mortality, 148;
primes, 141; symmetric functions,
143 ; sines, 286; theory of numbers,
142; trigonometric, 282, 286, 289,
290, 293.

Tacquet, 174.

Tanck, 23.

Tangent, 288.

Tannery, 33, 70, 120.

Tartaglia, 3, 49, 51, 53, 112, 115, 155,
225.

Tatstha, 29.

Taylor, B., 152, 166, 259; C., 2247.

Thales, 194.

Theaetetus, 212.

Theodorus, 69.

Theon of Alexandria, 34, 70.

Thieme, 244.

Thirty years' war, 22,

Thomé, 177.
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Thompson, 107, 266.

Timaeus, 212,

Tonti, 56.

Tontines, 7.

Torricelli, 237.

Torus, 213.

Transformations of congact, 178, 269
276.

Transon, 270.

Transversals, 144, 248.

Trenchant, 47.

Treutlein, 52s., 67, 96s., g75.

Trigonometry, 281.

Trisection. See Angle.

Trivium, 94.

Tschirnhausen, 157, 159, 165, 178, 238,
241, 242,

Tylor, 6.

Ubaldi, 228.

Ulpian, 56.

Unger, 16%.
Universities, rise of, 94.
Unverzagt, 129%., 130%.

Valentiner, 256.

Van Ceulen, 222.

Van der Eycke, 222.

Vandermonde, 118, 159, 167.

Van Eyck, 226.

Van Schooten, 136, 141, 156, 242.

Variations. See Calculus.

Vector, 130.

Vedas, 25.

Veronese, 275.

Versed sine, 288,

Victorius, 27.

Vieta, 107, 108, 118, 117, 119, 134, 156,
191, 222, 229, 249, 287, 288.

Vincent, St., 151,

Vitruvius, 215.

Vlacgq, 292.

Voigt, 139.

Von Staudt, 162, 246, 249, 257259, 263

Vooght, 292.

Wafa, 225, 286.

Wallis, 117, 125, 131, 135, 154, 173, 234.
236, 237, 242.

Waring, 143, 159, 239.
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Weber, 189.

Weierstrass, 62, 120, 147, 178, 181, 189.
Welsh counting, 8; practice, 53.
Wessel, 125.

Widmann, 47, 51, 220.

Wiener, 2261., 245, 278.

Witt, De, 57, 148.

Wittstein, 59, 256m.

Wolf, 47, 48.

Woodhouse, 178%.

Woolhouse, 276%.
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Wordsworth, 12%.
Wren, 243, 247-

#, the symbol, 97.
Year, length of, 24.

Zangemeister, 11.
Zeller, 139.
Zenodorus, 200.

Zero, 12, 16, 39, 40, 74.
Zeuthen, 68#., 253, 264.
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